Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight

被引:2
|
作者
Zhou, Yiying [1 ]
Cai, Junxi [1 ]
Sun, Yuming [1 ]
Jia, Shuhan [1 ]
Liu, Zhonghuan [1 ]
Tang, Xu [1 ]
Hu, Bo [1 ]
Zhang, Yue [2 ]
Yan, Yan [1 ]
Zhu, Zhi [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Inst Adv Mat, Zhenjiang 212013, Peoples R China
[2] Liaoning Normal Univ, Sch Chem & Chem Engn, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
photocatalysis; heterojunction; CO2; reduction; g-C3N4; CeO2; OXYGEN VACANCY; CEO2; PERFORMANCE; COMPOSITE;
D O I
10.3390/catal14080546
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the successful synthesis of a Cu@g-C3N4/CeO2-like Z-scheme heterojunction through hydrothermal and photo-deposition methods represents high CO2 reduction activity with remarkable CO selectivity, as evidenced by the impressive CO yield of 33.8 mu mol/g for Cu@g-C3N4/CeO2, which is over 10 times higher than that of g-C3N4 and CeO2 individually. The characterization and control experimental results indicate that the formation of heterojunctions and the introduction of Cu sites promote charge separation and the transfer of hot electrons, as well as the photothermal effect, which are the essential reasons for the improved CO2 reduction activity. Remarkably, Cu@g-C3N4/CeO2 still exhibits about 92% performance even after multiple cycles. In situ FTIR was utilized to confirm the production of COOH* at 1472 cm(-1) and to elucidate the mechanism behind the high selectivity for CO production. The study's investigation into the wide-ranging applicability of the Cu@g-C3N4/CeO2-like Z-scheme heterojunction catalysts is noteworthy, and the exploration of potential reaction mechanisms for CO2 reduction adds valuable insights to the field of catalysis.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fabrication of a direct Z-scheme heterojunction of UiO-66-NH2 and tubular g-C3N4 for the stable photocatalytic reduction of CO2 to CO and CH4
    Liu, Hongyang
    Yang, Yang
    Guo, Chaojun
    Zhou, Yonghua
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (20) : 5938 - 5948
  • [22] ?-Fe2O3/g-C3N4 Z-Scheme Heterojunction Photocathode to Enhance Microbial Electrosynthesis of Acetate from CO2
    Li, Tao
    Zhang, Kang
    Song, Tian-shun
    Xie, Jingjing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (51): : 17308 - 17317
  • [23] Preparation and photocatalytic CO2 reduction performance of Z-scheme g-C3N4/WO3•H2O
    Zhang, Jian
    Weng, Sen
    Shi, Junjie
    Cai, Jingyu
    Xiao, Longqiang
    Jingxi Huagong/Fine Chemicals, 2024, 41 (04): : 858 - 864
  • [24] Construction of Bi2WO6/g-C3N4/Cu foam as 3D Z-scheme photocatalyst for photocatalytic CO2 reduction
    Liu, Juxin
    Du, Tao
    Chen, Peng
    Yue, Qiang
    Wang, Heming
    Zhou, Lifeng
    Wang, Yisong
    APPLIED SURFACE SCIENCE, 2024, 664
  • [25] Construction of Cu-Modified g-C3N4 Nanosheets for Photoinduced CO2 Reduction to CO and Selectivity Mechanism Insight
    Qi, Qi
    Shen, Wenjing
    Cai, Ming
    Cai, Junxi
    Hu, Bo
    Han, Donglai
    Tang, Xu
    Zhu, Zhi
    Huo, Pengwei
    ACS APPLIED NANO MATERIALS, 2024, 7 (21) : 24788 - 24797
  • [26] Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight
    Dai, Benlin
    Zhao, Wei
    Wei, Wei
    Cao, Jihui
    Yang, Gang
    Li, Shijie
    Sun, Cheng
    Leung, Dennis Y. C.
    CARBON, 2022, 193 : 272 - 284
  • [27] Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight
    Dai, Benlin
    Zhao, Wei
    Wei, Wei
    Cao, Jihui
    Yang, Gang
    Li, Shijie
    Sun, Cheng
    Leung, Dennis Y.C.
    Carbon, 2022, 193 : 272 - 284
  • [28] Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction
    He, Yiming
    Zhang, Lihong
    Fan, Maohong
    Wang, Xiaoxing
    Walbridge, Mike L.
    Nong, Qingyan
    Wu, Ying
    Zhao, Leihong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 137 : 175 - 184
  • [29] A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance
    Di, Tingmin
    Zhu, Bicheng
    Cheng, Bei
    Yu, Jiaguo
    Xu, Jingsan
    JOURNAL OF CATALYSIS, 2017, 352 : 532 - 541
  • [30] Z-scheme heterojunction of Bi2S3/g-C3N4 and its photocatalytic effect
    Meng, Yachu
    Li, Yuzhen
    Xia, Yunsheng
    Chen, Wenjun
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 29 (02) : 128 - 138