Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement

被引:0
|
作者
Li, Meijing [1 ]
Huang, Runqing [1 ]
Qi, Xianxian [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 200306, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 02期
基金
中国国家自然科学基金;
关键词
CNER; multi-feature fusion; BiLSTM; CNN; MHA; MODEL;
D O I
10.32604/cmc.2024.053630
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chinese Clinical Named Entity Recognition (CNER) is a crucial step in extracting medical information and is of great significance in promoting medical informatization. However, CNER poses challenges due to the specificity of clinical terminology, the complexity of Chinese text semantics, and the uncertainty of Chinese entity boundaries. To address these issues, we propose an improved CNER model, which is based on multi-feature fusion and multi-scale local context enhancement. The model simultaneously fuses multi-feature representations of pinyin, radical, Part of Speech (POS), word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition. Furthermore, to address the model's limitation of focusing just on global features, we incorporate Convolutional Neural Networks (CNNs) with various kernel sizes to capture multiscale local features of the text and enhance the model's comprehension of the text. Finally, we integrate the obtained global and local features, and employ multi-head attention mechanism (MHA) extraction to enhance the model's focus on characters associated with medical entities, hence boosting the model's performance. We obtained 92.74%, and 87.80% F1 scores on the two CNER benchmark datasets, CCKS2017 and CCKS2019, respectively. The results demonstrate that our model outperforms the latest models in CNER, showcasing its outstanding overall performance. It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.
引用
收藏
页码:2283 / 2299
页数:17
相关论文
共 50 条
  • [21] MSFM: Multi-view Semantic Feature Fusion Model for Chinese Named Entity Recognition
    Liu, Jingxin
    Cheng, Jieren
    Peng, Xin
    Zhao, Zeli
    Tang, Xiangyan
    Sheng, Victor S.
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (06): : 1833 - 1848
  • [22] Chinese named entity recognition based on multi-criteria fusion
    Cai Q.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2020, 50 (05): : 929 - 934
  • [23] A multi-scale embedding network for unified named entity recognition in Chinese Electronic Medical Records
    Zhao, Hui
    Xiong, Wenjun
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 665 - 674
  • [24] A Person Re-Identification Method with Multi-Scale and Multi-Feature Fusion
    Liu, Li
    Li, Xi
    Lei, Xuemei
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (12): : 1868 - 1876
  • [25] Accurate Retrieval of Multi-scale Clothing Images Based on Multi-feature Fusion
    Wang Z.-W.
    Pu Y.-Y.
    Wang X.
    Zhao Z.-P.
    Xu D.
    Qian W.-H.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (04): : 740 - 754
  • [26] A multi-feature fusion model for Chinese relation extraction with entity sense
    Zhang, Jiangying
    Hao, Kuangrong
    Tang, Xue-song
    Cai, Xin
    Xiao, Yan
    Wang, Tong
    KNOWLEDGE-BASED SYSTEMS, 2020, 206
  • [27] Chinese Address Recognition Method Based on Multi-Feature Fusion
    Wang, Yansong
    Wang, Meng
    Ding, Chaoling
    Yang, Xinghua
    Chen, Jian
    IEEE ACCESS, 2022, 10 : 108905 - 108913
  • [28] Human action recognition using multi-feature fusion
    Shao, Yan-Hua, 1818, Board of Optronics Lasers (25):
  • [29] Multi-Layer Model Based on Multi-Scale and Multi-Feature Fusion for SAR Images
    Zhai, Aobo
    Wen, Xianbin
    Xu, Haixia
    Yuan, Liming
    Meng, Qingxia
    REMOTE SENSING, 2017, 9 (10)
  • [30] An Entity Relation Extraction Method Based on Dynamic Context and Multi-Feature Fusion
    Ma, Xiaolin
    Wu, Kaiqi
    Kuang, Hailan
    Liu, Xinhua
    APPLIED SCIENCES-BASEL, 2022, 12 (03):