Contrastive Learning Joint Regularization for Pathological Image Classification with Noisy Labels

被引:0
|
作者
Guo, Wenping [1 ]
Han, Gang [1 ,2 ]
Mo, Yaling [1 ]
Zhang, Haibo [1 ]
Fang, Jiangxiong [1 ]
Zhao, Xiaoming [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
noise labels; pathological images classification; contrastive learning; regularization; memorization effect;
D O I
10.3390/electronics13132456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The annotation of pathological images often introduces label noise, which can lead to overfitting and notably degrade performance. Recent studies have attempted to address this by filtering samples based on the memorization effects of DNNs. However, these methods often require prior knowledge of the noise rate or a small, clean validation subset, which is extremely difficult to obtain in real medical diagnosis processes. To reduce the effect of noisy labels, we propose a novel training strategy that enhances noise robustness without prior conditions. Specifically, our approach includes self-supervised regularization to encourage the model to focus more on the intrinsic connections between images rather than relying solely on labels. Additionally, we employ a historical prediction penalty module to ensure consistency between successive predictions, thereby slowing down the model's shift from memorizing clean labels to memorizing noisy labels. Furthermore, we design an adaptive separation module to perform implicit sample selection and flip the labels of noisy samples identified by this module and mitigate the impact of noisy labels. Comprehensive evaluations of synthetic and real pathological datasets with varied noise levels confirm that our method outperforms state-of-the-art methods. Notably, our noise handling process does not require any prior conditions. Our method achieves highly competitive performance in low-noise scenarios which aligns with current pathological image noise situations, showcasing its potential for practical clinical applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Joint Optimization Framework for Learning with Noisy Labels
    Tanaka, Daiki
    Ikami, Daiki
    Yamasaki, Toshihiko
    Aizawa, Kiyoharu
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5552 - 5560
  • [22] Robust Image Classification With Noisy Labels by Negative Learning and Feature Space Renormalization
    Wu, Hao
    Sun, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9280 - 9291
  • [23] Joint Negative and Positive Learning for Noisy Labels
    Kim, Youngdong
    Yun, Juseung
    Shon, Hyounguk
    Kim, Junmo
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9437 - 9446
  • [24] Learning Deep Networks from Noisy Labels with Dropout Regularization
    Jindal, Ishan
    Nokleby, Matthew
    Chen, Xuewen
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 967 - 972
  • [25] SAR Image Classification Using Contrastive Learning and Pseudo-Labels With Limited Data
    Wang, Chenchen
    Gu, Hong
    Su, Weimin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] NCMatch: Semi-supervised Learning with Noisy Labels via Noisy Sample Filter and Contrastive Learning
    Sun, Yuanbo
    Gao, Can
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 15 - 27
  • [27] Weakly supervised pathological whole slide image classification based on contrastive learning
    Xie, Yining
    Long, Jun
    Hou, Jianxin
    Chen, Deyun
    Guan, Guohui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60809 - 60831
  • [28] Multi-view representation for pathological image classification via contrastive learning
    Chen, Kaitao
    Sun, Shiliang
    Zhao, Jing
    Wang, Feng
    Zhang, Qingjiu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 2285 - 2296
  • [29] Learning with noisy labels using collaborative sample selection and contrastive semi
    Miao, Qing
    Wu, Xiaohe
    Xu, Chao
    Ji, Yanli
    Zuo, Wangmeng
    Guo, Yiwen
    Meng, Zhaopeng
    KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [30] ECLB: Efficient contrastive learning on bi-level for noisy labels
    Guan, Juwei
    Liu, Jiaxiang
    Huang, Shuying
    Yang, Yong
    KNOWLEDGE-BASED SYSTEMS, 2024, 300