Contrastive Learning Joint Regularization for Pathological Image Classification with Noisy Labels

被引:0
|
作者
Guo, Wenping [1 ]
Han, Gang [1 ,2 ]
Mo, Yaling [1 ]
Zhang, Haibo [1 ]
Fang, Jiangxiong [1 ]
Zhao, Xiaoming [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
noise labels; pathological images classification; contrastive learning; regularization; memorization effect;
D O I
10.3390/electronics13132456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The annotation of pathological images often introduces label noise, which can lead to overfitting and notably degrade performance. Recent studies have attempted to address this by filtering samples based on the memorization effects of DNNs. However, these methods often require prior knowledge of the noise rate or a small, clean validation subset, which is extremely difficult to obtain in real medical diagnosis processes. To reduce the effect of noisy labels, we propose a novel training strategy that enhances noise robustness without prior conditions. Specifically, our approach includes self-supervised regularization to encourage the model to focus more on the intrinsic connections between images rather than relying solely on labels. Additionally, we employ a historical prediction penalty module to ensure consistency between successive predictions, thereby slowing down the model's shift from memorizing clean labels to memorizing noisy labels. Furthermore, we design an adaptive separation module to perform implicit sample selection and flip the labels of noisy samples identified by this module and mitigate the impact of noisy labels. Comprehensive evaluations of synthetic and real pathological datasets with varied noise levels confirm that our method outperforms state-of-the-art methods. Notably, our noise handling process does not require any prior conditions. Our method achieves highly competitive performance in low-noise scenarios which aligns with current pathological image noise situations, showcasing its potential for practical clinical applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Triple Contrastive Representation Learning for Hyperspectral Image Classification With Noisy Labels
    Zhang, Xinyu
    Yang, Shuyuan
    Feng, Zhixi
    Song, Liangliang
    Wei, Yantao
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [2] A Framework Using Contrastive Learning for Classification with Noisy Labels
    Ciortan, Madalina
    Dupuis, Romain
    Peel, Thomas
    DATA, 2021, 6 (06)
  • [3] Twin Contrastive Learning with Noisy Labels
    Huang, Zhizhong
    Zhang, Junping
    Shan, Hongming
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11661 - 11670
  • [4] On Learning Contrastive Representations for Learning with Noisy Labels
    Yi, Li
    Liu, Sheng
    She, Qi
    McLeod, A. Ian
    Wang, Boyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16661 - 16670
  • [5] A fundus image classification framework for learning with noisy labels
    Hu, Tingxin
    Yang, Bingyu
    Guo, Jia
    Zhang, Weihang
    Liu, Hanruo
    Wang, Ningli
    Li, Huiqi
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [6] Ensemble diversified learning for image classification with noisy labels
    Ahmed Ahmed
    Hayder Yousif
    Zhihai He
    Multimedia Tools and Applications, 2021, 80 : 20759 - 20772
  • [7] Ensemble diversified learning for image classification with noisy labels
    Ahmed, Ahmed
    Yousif, Hayder
    He, Zhihai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (14) : 20759 - 20772
  • [8] Image classification with deep learning in the presence of noisy labels: A survey
    Algan, Gorkem
    Ulusoy, Ilkay
    KNOWLEDGE-BASED SYSTEMS, 2021, 215
  • [9] Image classification with deep learning in the presence of noisy labels: A survey
    Algan, Görkem
    Ulusoy, Ilkay
    Algan, Görkem (e162565@metu.edu.tr), 1600, Elsevier B.V. (215):
  • [10] Learning with Noisy Labels via Sparse Regularization
    Zhou, Xiong
    Liu, Xianming
    Wang, Chenyang
    Zhai, Deming
    Jiang, Junjun
    Ji, Xiangyang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 72 - 81