Quantile regression based on the counting process approach under dependent truncated data

被引:0
|
作者
Hsieh, Jin-Jian [1 ]
Chen, Pin-Han [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, 168 Univ Rd, Chiayi, Taiwan
关键词
Archimedean copula model; counting process; dependent truncated data; Kendall's tau; quantile regression model; SURVIVAL ANALYSIS;
D O I
10.1080/00949655.2024.2403515
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper focuses on analysing dependent truncated data. To address this, we draw inspiration from some literatures and employ the Archimedean copula model to establish a correlation between the truncation time and the survival time. Building on this, we refer to the U-statistics and the copula-graphic method to estimate the association parameter and the survival function. Subsequently, we proceed to build a quantile regression model and develop an estimation procedure for the quantile regression parameters using the counting process method. To further validate the efficacy of our approach, we conduct simulation experiments with specific settings of quantiles and correlations. In conclusion, we apply our method to analyse two datasets: one pertaining to HIV transfusion infections and the other related to retirement centres.
引用
收藏
页码:3788 / 3806
页数:19
相关论文
共 50 条
  • [21] A simple approach to quantile regression for panel data
    Canay, Ivan A.
    ECONOMETRICS JOURNAL, 2011, 14 (03): : 368 - 386
  • [22] Quantile regression under dependent censoring with unknown association
    D'Haen, Myrthe
    Van Keilegom, Ingrid
    Verhasselt, Anneleen
    LIFETIME DATA ANALYSIS, 2025,
  • [23] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640
  • [24] Nonparametric Quantile Regression Estimation for Functional Dependent Data
    Dabo-Niang, Sophie
    Laksaci, Ali
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (07) : 1254 - 1268
  • [25] Quantile regression and variable selection for partially linear model with randomly truncated data
    Hong-Xia Xu
    Zhen-Long Chen
    Jiang-Feng Wang
    Guo-Liang Fan
    Statistical Papers, 2019, 60 : 1137 - 1160
  • [26] A new approach to truncated regression for count data
    Ana María Martínez-Rodríguez
    Antonio Conde-Sánchez
    María José Olmo-Jiménez
    AStA Advances in Statistical Analysis, 2019, 103 : 503 - 526
  • [27] A new approach to truncated regression for count data
    Martinez-Rodriguez, Ana Maria
    Conde-Sanchez, Antonio
    Olmo-Jimenez, Maria Jose
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (04) : 503 - 526
  • [28] Quantile regression methods for left-truncated and right-censored data
    Cheng, Jung-Yu
    Huang, Shu-Chun
    Tzeng, Shinn-Jia
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (03) : 443 - 459
  • [29] A weighted quantile regression for left-truncated and right-censored data
    Shen, Pao-Sheng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (03) : 596 - 604
  • [30] Quantile regression and variable selection for partially linear model with randomly truncated data
    Xu, Hong-Xia
    Chen, Zhen-Long
    Wang, Jiang-Feng
    Fan, Guo-Liang
    STATISTICAL PAPERS, 2019, 60 (04) : 1137 - 1160