Regulation of dynamic recrystallization in p-type Bi2Te3-based compounds leads to high thermoelectric performance and robust mechanical properties

被引:0
|
作者
Chen, Shuo [1 ]
Luo, Tingting [1 ]
Yang, Zhen [1 ]
Zhong, Shenlong [1 ]
Su, Xianli [1 ]
Yan, Yonggao [1 ]
Wu, Jinsong [1 ]
Poudeu, Pierre Ferdinand Poudeu [2 ]
Zhang, Qingjie [1 ]
Tang, Xinfeng [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Univ Michigan, Dept Mat Sci & Engn, Lab Emerging Energy & Elect Mat LE3M, Ann Arbor, MI 48109 USA
关键词
Thermoelectric; Dynamic recrystallization; Texture; LAGBs; Bi2Te3-Basedcompounds; INDUCED LATTICE-DEFECTS; ALLOYS; BI0.5SB1.5TE3; CONDUCTIVITY; TEMPERATURE; TEXTURE;
D O I
10.1016/j.mtphys.2024.101524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bi2Te3-based bulk materials are the best commercially available thermoelectric materials for near room temperature applications. However, the poor mechanical properties of zone melting material and inferior thermoelectric performance of powder metallurgical material restrict their large scale deployment. In this study, p-type Bi2Te3-based materials were prepared using the hot extrusion technique, and the underlying mechanisms for microstructure evolution were revealed. The hot extrusion speed significantly impacts the strain rate, an indicator to modulate the dynamic recrystallization (DRX) and grain growth, thereby effectively regulating the microstructures of samples. For the sample extruded at a speed of 1.0 mm min- 1, the refined grain with an average grain size of 1.53 mu m and an orientation factor F(110) of 0.28 is achieved. This highly textured structure and high-density low-angle boundaries (LAGBs) maintain the high carrier mobility of 264 cm2 V- 1 s-1, comparable with the zone melting sample. In contrast, increasing grain boundaries, dislocations, and inherent point defects intensifies the phonon scattering and suppresses the lattice thermal conductivity to 0.73 W m- 1 K- 1. All these contribute to a practical high ZT value of 1.1 at room temperature. Moreover, the fine grains and highdensity dislocations ensure robust mechanic properties with a compressive strength of 189 MPa and a bending strength of 139 MPa, which is a guarantee for the successful cutting of microparticles with dimensions of 100 x 100 x 200 mu m3. The fabrication of high-quality materials with both high thermoelectric performance and strong mechanical properties paves the way for the miniaturization of thermoelectric modules.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Realizing record high performance in n-type Bi2Te3-based thermoelectric materials
    Zhu, Bin
    Liu, Xixi
    Wang, Qi
    Qiu, Yang
    Shu, Zhong
    Guo, Zuteng
    Tong, Yao
    Cui, Juan
    Gu, Meng
    He, Jiaqing
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (07) : 2106 - 2114
  • [22] Electrodeposition of Bi2Te3-based p and n-type ternary thermoelectric compounds in chloride baths
    Kang, Wan-Shan
    Chou, Wei-Chen
    Li, Wen-Jin
    Shen, Tsung-Han
    Lin, Chao-Sung
    THIN SOLID FILMS, 2018, 660 : 108 - 119
  • [23] Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds*
    Li, Qiang
    Chen, Shuo
    Liu, Ke-Ke
    Lu, Zhi-Qiang
    Hu, Qin
    Feng, Li-Ping
    Zhang, Qing-Jie
    Wu, Jin-Song
    Su, Xian-Li
    Tang, Xin-Feng
    ACTA PHYSICA SINICA, 2023, 72 (09)
  • [24] Effects of annealing on the thermoelectric and microstructural properties of deformed n-type Bi2Te3-based compounds
    Lee, DM
    Lim, CH
    Cho, DC
    Lee, YS
    Lee, CH
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (02) : 360 - 365
  • [25] Effects of annealing on the thermoelectric and microstructural properties of deformed n-type Bi2Te3-based compounds
    D. M. Lee
    C. H. Lim
    D. C. Cho
    Y. S. Lee
    C. H. Lee
    Journal of Electronic Materials, 2006, 35
  • [26] High-performance near-room-temperature n-type Bi2Te3-based thermoelectric alloys with superior mechanical properties
    Liu, Jiaying
    Liu, Feng
    Li, Yuzheng
    Ying, Boyang
    Wu, Yongqing
    Tang, Zefeng
    Cao, Yiqi
    Zhu, Tiejun
    Fu, Chenguang
    SCIENCE CHINA-MATERIALS, 2025, 68 (03) : 920 - 927
  • [27] Preparation and Thermoelectric Properties of Nanoporous Bi2Te3-Based Alloys
    Y. H. Zhang
    G. Y. Xu
    F. Han
    Z. Wang
    C. C. Ge
    Journal of Electronic Materials, 2010, 39 : 1741 - 1745
  • [28] Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials
    Aabdin, Z.
    Peranio, N.
    Eibl, O.
    Toellner, W.
    Nielsch, K.
    Bessas, D.
    Hermann, R. P.
    Winkler, M.
    Koenig, J.
    Boettner, H.
    Pacheco, V.
    Schmidt, J.
    Hashibon, A.
    Elsaesser, C.
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (06) : 1792 - 1798
  • [29] Preparation and Thermoelectric Properties of Nanoporous Bi2Te3-Based Alloys
    Zhang, Y. H.
    Xu, G. Y.
    Han, F.
    Wang, Z.
    Ge, C. C.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 1741 - 1745
  • [30] Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials
    Z. Aabdin
    N. Peranio
    O. Eibl
    W. Töllner
    K. Nielsch
    D. Bessas
    R.P. Hermann
    M. Winkler
    J. König
    H. Böttner
    V. Pacheco
    J. Schmidt
    A. Hashibon
    C. Elsässer
    Journal of Electronic Materials, 2012, 41 : 1792 - 1798