Topological Characterization of Metal-Organic Frameworks: A Perspective

被引:1
|
作者
Glasby, Lawson T. [1 ]
Cordiner, Joan L. [1 ]
Cole, Jason C. [2 ]
Moghadam, Peyman Z. [3 ]
机构
[1] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, England
[2] Cambridge Crystallog Data Ctr, Cambridge CB2 1EZ, England
[3] UCL, Dept Chem Engn, London WC1E 7JE, England
基金
“创新英国”项目;
关键词
COORDINATION POLYMERS; 3-PERIODIC NETS; RETICULAR CHEMISTRY; CRYSTAL-STRUCTURES; TILINGS; DESIGN; TERMINOLOGY; NETWORKS; COMPUTATION; DIVERSITY;
D O I
10.1021/acs.chemmater.4c00762
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) began to emerge over two decades ago, resulting in the deposition of 120 000 MOF-like structures (and counting) into the Cambridge Structural Database (CSD). Topological analysis is a critical step toward understanding periodic MOF materials, offering insight into the design and synthesis of these crystals via the simplification of connectivity imposed on the complete chemical structure. While some of the most prevalent topologies, such as face-centered cubic (fcu), square lattice (sql), and diamond (dia), are simple and can be easily assigned to structures, MOFs that are built from complex building blocks, with multiple nodes of different symmetry, result in difficult to characterize topological configurations. In these complex structures, representations can easily diverge where the definition of nodes and linkers are blurred, especially for cases where they are not immediately obvious in chemical terms. Currently, researchers have the option to use software such as ToposPro, MOFid, and CrystalNets to aid in the assignment of topology descriptors to new and existing MOFs. These software packages are readily available and are frequently used to simplify original MOF structures into their basic connectivity representations before algorithmically matching these condensed representations to a database of underlying mathematical nets. These approaches often require the use of in-built bond assignment algorithms alongside the simplification and matching rules. In this Perspective, we discuss the importance of topology within the field of MOFs, the methods and techniques implemented by these software packages, and their availability and limitations and review their uptake within the MOF community.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096
  • [42] Lanthanide metal-organic frameworks
    Borovkov, Victor
    [J]. FRONTIERS IN CHEMISTRY, 2015, 3
  • [43] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586
  • [44] Metal-Organic Frameworks in Motion
    Terzopoulou, Anastasia
    Nicholas, James D.
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Pane, Salvador
    Puigmarti-Luis, Josep
    [J]. CHEMICAL REVIEWS, 2020, 120 (20) : 11175 - 11193
  • [45] Introduction to Metal-Organic Frameworks
    Zhou, Hong-Cai
    Long, Jeffrey R.
    Yaghi, Omar M.
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 673 - 674
  • [46] Fulleretic metal-organic frameworks
    Shustova, Natalia
    Williams, Derek
    Dolgopolova, Ekaterina
    Rice, Allison
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [47] Metal-Organic Frameworks in Biomedicine
    Horcajada, Patricia
    Gref, Ruxandra
    Baati, Tarek
    Allan, Phoebe K.
    Maurin, Guillaume
    Couvreur, Patrick
    Ferey, Gerard
    Morris, Russell E.
    Serre, Christian
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 1232 - 1268
  • [48] Interpenetrating metal-organic frameworks
    Gong, Yun-Nan
    Zhong, Di-Chang
    Lu, Tong-Bu
    [J]. CRYSTENGCOMM, 2016, 18 (15): : 2596 - 2606
  • [49] Multicomponent Metal-Organic Frameworks
    Telfer, Shane
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C51 - C51
  • [50] Distinguishing Metal-Organic Frameworks
    Barthel, Senja
    Alexandrov, Eugeny V.
    Proserpio, Davide M.
    Smit, Berend
    [J]. CRYSTAL GROWTH & DESIGN, 2018, 18 (03) : 1738 - 1747