Approach to Bearing Fault Diagnosis: CNN-Based Classification Across Different Preprocessing Techniquese

被引:0
|
作者
Jachymczyk, Urszula [1 ]
Knap, Pawel [1 ]
Balazy, Patryk [1 ]
Podlasek, Szymon [1 ]
Lalik, Krzysztof [1 ]
机构
[1] AGH Univ Krakow, Fac Mech Engn & Robot, Krakow, Poland
关键词
Vibration Analysis; Condition Monitoring Systems; Predictive Maintenance; Signal Processing; Deep Learning;
D O I
10.1109/ICCC62069.2024.10569862
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a rigorous investigation into the efficacy of diverse preprocessing methods for bearing fault classification, leveraging the comprehensive CWRU dataset. Four distinct approaches were explored: raw data analysis, Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), and Continuous Wavelet Transform (CWT). The study introduces a Convolutional Neural Network (CNN) as the underlying algorithm for fault classification. Through extensive experimentation and analysis, we assess the performance of CNN in conjunction with each preprocessing technique. The results provide valuable insights into the strengths and limitations of raw data and frequency-domain representations, highlighting the impact on the accuracy of fault classification in machinery health monitoring applications, which was decided to be the main score in models evaluation. This comparative analysis can not only contribute to the advancement of condition monitoring but also assist practitioners in selecting optimal preprocessing methods for their specific needs.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Enhancing Breast Cancer Diagnosis: A CNN-Based Approach for Medical Image Segmentation and Classification
    Saifullah, Shoffan
    Dreżewski, Rafal
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024, 14835 LNCS : 155 - 162
  • [12] Enhancing Breast Cancer Diagnosis: A CNN-Based Approach for Medical Image Segmentation and Classification
    Saifullah, Shoffan
    Drezewski, Rafal
    COMPUTATIONAL SCIENCE, ICCS 2024, PT IV, 2024, 14835 : 155 - 162
  • [13] CNN-Based Classification for Point Cloud Object With Bearing Angle Image
    Lin, Chien-Chou
    Kuo, Chih-Hung
    Chiang, Hsin-Te
    IEEE SENSORS JOURNAL, 2022, 22 (01) : 1003 - 1011
  • [14] Bearing Fault Diagnosis Based on VMD and Improved CNN
    Zhenzhen Jin
    Diao Chen
    Deqiang He
    Yingqian Sun
    Xianhui Yin
    Journal of Failure Analysis and Prevention, 2023, 23 : 165 - 175
  • [15] Bearing Fault Diagnosis Based on VMD and Improved CNN
    Jin, Zhenzhen
    Chen, Diao
    He, Deqiang
    Sun, Yingqian
    Yin, Xianhui
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2023, 23 (01) : 165 - 175
  • [16] Bearing fault diagnosis method based on MTF - CNN
    Zhao Z.
    Li C.
    Dou G.
    Yang S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (02): : 126 - 131
  • [17] Signals hierarchical feature enhancement method for CNN-based fault diagnosis
    Zhang, Huang
    Zhang, Shuyou
    Wang, Zili
    Qiu, Lemiao
    Zhang, Yiming
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (09)
  • [18] Whitening CNN-Based Rotor System Fault Diagnosis Model Features
    Miettinen, Jesse
    Nikula, Riku-Pekka
    Keski-Rahkonen, Joni
    Fagerholm, Fredrik
    Tiainen, Tuomas
    Sierla, Seppo
    Viitala, Raine
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [19] A novel CNN-based approach for detection and classification of DDoS attacks
    Najar, Ashfaq Ahmad
    Sugali, Manohar Naik
    Lone, Faisal Rasheed
    Nazir, Azra
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (19):
  • [20] Bearing fault pattern recognition based on image classification with CNN
    Zhang A.
    Huang J.
    Ji S.
    Li D.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (04): : 165 - 171