Carbon emissions forecasting based on tensor decomposition with multi-source data fusion

被引:0
|
作者
Xu, Xiaofeng [1 ]
Cao, Xiaoxi [1 ]
Yu, Lean [2 ]
机构
[1] China Univ Petr, Sch Econ & Management, Qingdao 266580, Peoples R China
[2] Sichuan Univ, Business Sch, Chengdu 610065, Peoples R China
关键词
Carbon emissions forecasting; Tensor decoposition; Text features; Data fusion; SENTIMENT;
D O I
10.1016/j.ins.2024.121235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately forecasting carbon dioxide emissions is crucial for policymakers and researchers aiming to combat climate change and develop effective emission reduction strategies. This study introduces an innovative method that leverages multi-source social media information to address the challenges of insufficient information and data uncertainty in carbon emission time series forecasting. We propose a combined Tensor-LSTM-ARIMA model for predicting carbon emissions, utilizing tensor decomposition data analysis methods. The results indicate that this combined model effectively captures the complex relationships within heterogeneous data, outperforming baseline models in prediction accuracy. Furthermore, the study demonstrates that unstructured social media data can enhance structured time series data, providing a new perspective for comprehensively understanding the variables influencing carbon emission predictions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] City-Wide Influenza Forecasting based on Multi-Source Data
    Su, Kun
    Xiong, Yu
    Qi, Li
    Xia, Yu
    Li, Baisong
    Yang, Lin
    Li, Qin
    Tang, Wenge
    Li, Xian
    Ruan, Xiaowen
    Lu, Shaofeng
    Chen, Xianxian
    Shen, Chaobo
    Hong, Boran
    Xu, Jiaying
    Xu, Liang
    Han, Mei
    Xiao, Jing
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3930 - 3937
  • [22] Multi-source data fusion for economic data analysis
    Li, Menggang
    Wang, Fang
    Jia, Xiaojun
    Li, Wenrui
    Li, Ting
    Rui, Guangwei
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 4729 - 4739
  • [23] Multi-source data fusion for economic data analysis
    Menggang Li
    Fang Wang
    Xiaojun Jia
    Wenrui Li
    Ting Li
    Guangwei Rui
    [J]. Neural Computing and Applications, 2021, 33 : 4729 - 4739
  • [24] Multi-Source Data Fusion Study in Scientometrics
    Xu, Hai-Yun
    Wang, Chao
    Pang, Hong-shen
    Ru, Li-jie
    Fang, Shu
    [J]. QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES, 2016, : 611 - 626
  • [25] Study on Traffic Multi-Source Data Fusion
    Liu, Suping
    Zhang, Dongbo
    Li, Jialin
    [J]. INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2019, 13 (02) : 63 - 75
  • [26] Multi-source data fusion study in scientometrics
    Hai-Yun Xu
    Zeng-Hui Yue
    Chao Wang
    Kun Dong
    Hong-Shen Pang
    Zhengbiao Han
    [J]. Scientometrics, 2017, 111 : 773 - 792
  • [27] A General Multi-Source Data Fusion Framework
    Liu, Weiming
    Zhang, Chen
    Yu, Bin
    Li, Yitong
    [J]. ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 285 - 289
  • [28] Multi-source data fusion study in scientometrics
    Xu, Hai-Yun
    Yue, Zeng-Hui
    Wang, Chao
    Dong, Kun
    Pang, Hong-Shen
    Han, Zhengbiao
    [J]. SCIENTOMETRICS, 2017, 111 (02) : 773 - 792
  • [29] A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion
    Li, Xiaohan
    Wang, Jun
    Tan, Jinghua
    Ji, Shiyu
    Jia, Huading
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43753 - 43775
  • [30] A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion
    Xiaohan Li
    Jun Wang
    Jinghua Tan
    Shiyu Ji
    Huading Jia
    [J]. Multimedia Tools and Applications, 2022, 81 : 43753 - 43775