Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy

被引:0
|
作者
Sun, Jiajia [1 ]
Lai, Wei [2 ]
Zhao, Jiayan [1 ]
Xue, Jinhong [1 ]
Zhu, Tong [1 ]
Xiao, Mingshu [1 ]
Man, Tiantian [3 ]
Wan, Ying [3 ]
Pei, Hao [1 ]
Li, Li [1 ]
机构
[1] East China Normal Univ, Shanghai Frontiers Sci Ctr Genome Editing & Cell T, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200241, Peoples R China
[2] Hubei Univ Automot Technol, Sch Math Phys & Optoelect Engn, Hubei Key Lab Energy Storage & Power Battery, Shiyan 442002, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
来源
ACS SENSORS | 2024年 / 9卷 / 08期
关键词
SERS; drug mechanisms; artificial nose; self-assembled monolayers; convolutional neural network; EXPRESSION SIGNATURES; METASTATIC CELLS; GOLD; SCATTERING; SERS; DIFFERENTIATION; CLASSIFICATION; PHENOTYPE; PROTEIN; FILMS;
D O I
10.1021/acssensors.4c01205
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rapid identification of drug mechanisms is vital to the development and effective use of chemotherapeutics. Herein, we develop a multichannel surface-enhanced Raman scattering (SERS) sensor array and apply deep learning approaches to realize the rapid identification of the mechanisms of various chemotherapeutic drugs. By implementing a series of self-assembled monolayers (SAMs) with varied molecular characteristics to promote heterogeneous physicochemical interactions at the interfaces, the sensor can generate diversified SERS signatures for directly high-dimensionality fingerprinting drug-induced molecular changes in cells. We further train the convolutional neural network model on the multidimensional SAM-modulated SERS data set and achieve a discriminatory accuracy toward 99%. We expect that such a platform will contribute to expanding the toolbox for drug screening and characterization and facilitate the drug development process.
引用
下载
收藏
页码:4227 / 4235
页数:9
相关论文
共 50 条
  • [41] On-Site Detection of SARS-CoV-2 Antigen by Deep Learning-Based Surface-Enhanced Raman Spectroscopy and Its Biochemical Foundations
    Huang, Jinglin
    Wen, Jiaxing
    Zhou, Minjie
    Ni, Shuang
    Le, Wei
    Chen, Guo
    Wei, Lai
    Zeng, Yong
    Qi, Daojian
    Pan, Ming
    Xu, Jianan
    Wu, Yan
    Li, Zeyu
    Feng, Yuliang
    Zhao, Zongqing
    He, Zhibing
    Li, Bo
    Zhao, Songnan
    Zhang, Baohan
    Xue, Peili
    He, Shusen
    Fang, Kun
    Zhao, Yuanyu
    Du, Kai
    ANALYTICAL CHEMISTRY, 2021, 93 (26) : 9174 - 9182
  • [42] Rapid and accurate etizolam detection using surface-enhanced Raman spectroscopy for community drug checking
    Gozdzialski, Lea
    Rowley, Annabel
    Borden, Scott A.
    Saatchi, Armin
    Gill, Chris G.
    Wallace, Bruce
    Hore, Dennis K.
    INTERNATIONAL JOURNAL OF DRUG POLICY, 2022, 102
  • [43] Rapid single-cell detection and identification of bacteria by using surface-enhanced Raman spectroscopy
    Dina, Nicoleta Elena
    Colnita, Alia
    Leopold, Nicolae
    Haisch, Christoph
    BIOSENSORS 2016, 2017, 27 : 203 - 207
  • [44] Surface-enhanced Raman spectroscopy for identification of food processing bacteria
    Kashif, Muhammad
    Majeed, Muhammad Irfan
    Nawaz, Haq
    Rashid, Nosheen
    Abubakar, Muhammad
    Ahmad, Shamsheer
    Ali, Saqib
    Hyat, Hamza
    Bashir, Saba
    Batool, Fatima
    Akbar, Saba
    Anwar, Munir Ahmad
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 261
  • [45] Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy
    Dina, N. E.
    Zhou, H.
    Colnita, A.
    Leopold, N.
    Szoke-Nagy, T.
    Coman, C.
    Haisch, C.
    ANALYST, 2017, 142 (10) : 1782 - 1789
  • [46] Identification of Foodborne Pathogen Using Surface-Enhanced Raman Spectroscopy
    Qi W.
    Yang Y.
    Wang M.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2023, 56 (10): : 1003 - 1012
  • [47] Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy
    Liu, Siying
    Hu, Qiushi
    Li, Chao
    Zhang, Fangrong
    Gu, Hongjing
    Wang, Xinrui
    Li, Shuang
    Xue, Lei
    Madl, Tobias
    Zhang, Yun
    Zhou, Lei
    ACS SENSORS, 2021, 6 (08) : 2911 - 2919
  • [48] Noninvasive Diagnostics of Lung Cancer Based on Whole Blood Surface-Enhanced Raman Spectroscopy and Deep Machine Learning
    Chen, C.
    Zhang, Q.
    Lu, D.
    Liu, J.
    Lu, Y.
    Liu, K.
    JOURNAL OF APPLIED SPECTROSCOPY, 2022, 89 (05) : 879 - 885
  • [49] Noninvasive Diagnostics of Lung Cancer Based on Whole Blood Surface-Enhanced Raman Spectroscopy and Deep Machine Learning
    C. Chen
    Q. Zhang
    D. Lu
    J. Liu
    Y. Lu
    K. Liu
    Journal of Applied Spectroscopy, 2022, 89 : 879 - 885
  • [50] Rapid and Sensitive Detection of Acrylamide in Fried Food Based on Surface-Enhanced Raman Spectroscopy
    Cheng Jie
    Han Cai-qin
    Xie Jian-chun
    Su Xiao-ou
    Wang Pei-long
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (04) : 1087 - 1092