Investigation of the Effects of the Number of Shells, Raster Angle, Extrusion Ratio, and Path Width on Printed Polylactic Acid Parts with Fused Deposition Modeling 3D Printer

被引:2
|
作者
Tasdemir, Vedat [1 ]
机构
[1] Kutahya Dumlupinar Univ, Simav Technol Fac, Dept Mech Engn, Kutahya, Turkiye
关键词
extrusion ratio; FDM 3D printing; number of shells; path width; PLA; raster angle; MECHANICAL-PROPERTIES; OPTIMIZATION; SUSTAINABILITY; PARAMETERS; IMPACT;
D O I
10.1007/s11665-024-09863-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing technology is a rapidly developing technology in parallel with technological developments. FDM/FFF technology, one of the additive manufacturing technologies, is widely used in many areas. In the study, the effects of the number of shells, raster angle, path width, and extrusion ratio parameters on the mechanical properties, mass changes, and dimensional integrity of the produced parts were investigated. Experiments were performed with seven different numbers of shells (1, 2, 3, 4, 5, 6, 7) and seven different raster angles (0, 45, 90, 0/90, 15/75, 30/60, 45/45). It was made using seven different path widths (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and six different extrusion ratios (80, 90, 100, 110, 120, 140%). It was observed that the tensile strength increased (7% change) as the number of walls increased up to a certain number (up to 5), and the lowest tensile strength (41.42 MPa) was obtained in samples with a raster angle of 15/75 degrees. Again, considering the extrusion width, the lowest tensile strength was 38.63 MPa in the samples with a 0.2-mm path width, and the highest tensile strength in terms of path width was 47.28 MPa in the samples with a 0.4-mm path width. Within the scope of the study, it can be said that the extrusion ratio is the most important parameter affecting the tensile strength. When the extrusion ratio is 80%, the tensile strength is 31.32 MPa, and when the extrusion ratio increases to 100%, it is 47.66 MPa. The ratio of change is approximately 34.28%. While the largest deviations in terms of dimensional accuracy occurred at the 140% extrusion ratio, the largest mass deviations occurred at the 80% extrusion ratio. It has been determined that the selected parameters have significant effects on mechanical properties and size and mass changes.
引用
收藏
页码:11888 / 11898
页数:11
相关论文
共 50 条
  • [31] Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling
    Hsueh, Ming-Hsien
    Lai, Chao-Jung
    Chung, Cheng-Feng
    Wang, Shi-Hao
    Huang, Wen-Chen
    Pan, Chieh-Yu
    Zeng, Yu-Shan
    Hsieh, Chia-Hsin
    POLYMERS, 2021, 13 (14)
  • [32] Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process
    Ansari, Anis A.
    Kamil, M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 5462 - 5468
  • [33] Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling
    Prashantha, K.
    Roger, F.
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2017, 54 (01): : 24 - 29
  • [34] DESIGN AND CONSTRUCTION OF A BELT-ASSISTED VERTICAL EXTRUSION BASED FUSED DEPOSITION MODELING 3D PRINTER FOR AUTOMATED PART REMOVAL
    Brooks, Jacob
    Rahman, M. M. Towfiqur
    Joyee, Erina Baynojir
    PROCEEDINGS OF ASME 2023 18TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2023, VOL 2, 2023,
  • [35] Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication
    Lavecchia, Fulvio
    Guerra, Maria Grazia
    Galantucci, Luigi Maria
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (01) : 65 - 75
  • [36] Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication
    Fulvio Lavecchia
    Maria Grazia Guerra
    Luigi Maria Galantucci
    Progress in Additive Manufacturing, 2022, 7 : 65 - 75
  • [37] Fabrication of suppository shells via hot-melt extrusion paired with fused deposition modeling 3D printing techniques
    Zhang, Peilun
    Wang, Honghe
    Chung, Sooyeon
    Li, Jinghan
    Vemula, Sateesh Kumar
    Repka, Michael A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 94
  • [38] Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization
    Moradi, Mahmoud
    Aminzadeh, Ahmad
    Rahmatabadi, Davood
    Rasouli, Seyed Alireza
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (07) : 5441 - 5454
  • [39] Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization
    Mahmoud Moradi
    Ahmad Aminzadeh
    Davood Rahmatabadi
    Seyed Alireza Rasouli
    Journal of Materials Engineering and Performance, 2021, 30 : 5441 - 5454
  • [40] Post-processing technologies of copper–polylactic acid composites obtained by 3D printing fused deposition modeling
    Ambruș S.
    Muntean R.
    Kazamer N.
    Codrean C.
    Material Design and Processing Communications, 2021, 3 (05):