Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution

被引:2
|
作者
Soren, Madan Mohan [1 ]
Cotirla, Luminita-Ioana [2 ]
机构
[1] Berhampur Univ, Dept Math, Bhanja Bihar 760007, Odisha, India
[2] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
analytic function; fuzzy di ff erential subordinations and fuzzy di ff erential superordinations; Mittag-Le ffl er functions; Mittag-Le ffl er type Pascal distribution; sandwich-type results;
D O I
10.3934/math.20241023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive several fuzzy differential subordination and fuzzy differential superordination results for analytic functions Ms,gamma xi,beta, which involve the extended Mittag-Leffler function and the Pascal distribution series. We also investigate and introduce a class MBF,s,gamma and univalent functions in the open unit disc D by employing the newly defined operator Ms,gamma determine a specific relationship of inclusion for this class. Further, we establish prerequisites for a function role in serving as both the fuzzy dominant and fuzzy subordinant of the fuzzy differential subordination and superordination, respectively. Some novel results that are sandwich-type can be found here.
引用
收藏
页码:21053 / 21078
页数:26
相关论文
共 50 条
  • [41] Some results on the generalized Mittag-Leffler function operator
    JC Prajapati
    RK Jana
    RK Saxena
    AK Shukla
    Journal of Inequalities and Applications, 2013
  • [42] Further results on the generalized Mittag-Leffler function operator
    Ram K Saxena
    Jignesh P Chauhan
    Ranjan K Jana
    Ajay K Shukla
    Journal of Inequalities and Applications, 2015
  • [43] Some results on the Complete Monotonicity of Mittag-Leffler Functions of Le Roy Type
    Katarzyna Górska
    Andrzej Horzela
    Roberto Garrappa
    Fractional Calculus and Applied Analysis, 2019, 22 : 1284 - 1306
  • [44] Further results on the generalized Mittag-Leffler function operator
    Saxena, Ram K.
    Chauhan, Jignesh P.
    Jana, Ranjan K.
    Shukla, Ajay K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [45] On differentiation with respect to parameters of the functions of the Mittag-Leffler type
    Rogosin, Sergei V.
    Giraldi, Filippo
    Mainardi, Francesco
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [46] Dirichlet Averages of Generalized Mittag-Leffler Type Function
    Kumar, Dinesh
    Ram, Jeta
    Choi, Junesang
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [47] Fractional integrals and derivatives of Mittag-Leffler type functions
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1995, 39 (04): : 22 - 26
  • [48] Approximation by meromorphic functions with Mittag-Leffler type constraints
    Gauthier, PM
    Pouryayevali, MR
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (04): : 420 - 428
  • [49] Durrmeyer-Type Generalization of Mittag-Leffler Operators
    Icoz, Gurhan
    Cekim, Bayram
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (02): : 259 - 263
  • [50] Nonasymptotic properties of roots of a Mittag-Leffler type function
    Sedletskii, AM
    MATHEMATICAL NOTES, 2004, 75 (3-4) : 372 - 386