Performance and Economic Analysis of Two Types of High-Temperature Heat Pump Based on New Refrigerants

被引:0
|
作者
Sun, Dahan [1 ]
Qin, Jiang [1 ,2 ]
Liu, Zhongyan [3 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Chongqing Res Inst, Harbin Inst Technol, Chongqing 401120, Peoples R China
[3] Northeast Elect Power Univ, Sch Energy & Power Engn, Jilin 132000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
high-temperature heat pump; R744 transcritical cycle; new refrigerant; COP; economic analysis; conserve energy and reduce emissions; CO2; EXERGY; ENERGY; WATER; RECOVERY; PRESSURE; MIXTURE; WORKING; BLENDS;
D O I
10.3390/app14177735
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes, for the first time, the research concept of comparing energy and economy between transcritical cycle high-temperature heat pumps and subcritical cycle high-temperature heat pumps with new refrigerants. Experiments and simulations are conducted to compare the system performance and economy of two heat pumps, and the effects of different factors on the performance of two heat pumps are analyzed. The results show that R744/R1234yf (90/10) and R515-1 are the preferred refrigerants for transcritical cycle heat pumps and subcritical cycle heat pumps, respectively. The COP of the R744/R1234yf (90/10) transcritical heat pump is generally higher than that of the R515B-1 subcritical heat pump, and compared to the R515B-1 subcritical heat pump, the cost recovery period of the R744/R1234yf (90/10) transcritical heat pump is about 9-15 years. Therefore, it is recommended that users who use heat pumps for a long time choose transcritical cycle heat pumps. Meanwhile, with the change of evaporation temperature, the system COP of the R515B-1 subcritical heat pump and R744/R1234yf (90/10) transcritical heat pump increases by 61.11% and 65.91%, respectively. In addition, the optimal charge amount for the R515B-1 subcritical heat pump is 81.8% of that of the R744/R1234yf (90/10) transcritical heat pump.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Performance Analysis of Internal Heat Exchanger-Based Quasi-Two-Stage Vapor Compression Heat Pump System for High-Temperature Steam Production
    Hao, Zhang
    Yanting, Zhang
    Jingyu, Xu
    Lin, Wang
    Zheng, Huang
    ENERGY TECHNOLOGY, 2020, 8 (12)
  • [22] EXERGOECONOMIC ANALYSIS OF NEW HIGH-TEMPERATURE DISTRICT HEATING SYSTEM BASED ON ABSORPTION HEAT PUMP TECHNOLOGY IN COMBINED HEAT AND POWER
    Sun, Fangtian
    Fu, Lin
    Zhang, Shigang
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 587 - 599
  • [23] Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system
    Wu, Zhangxiang
    Wang, Xiaoyan
    Sha, Li
    Li, Xiaoqiong
    Yang, Xiaochen
    Ma, Xuelian
    Zhang, Yufeng
    ENERGY, 2021, 223
  • [24] Experimental investigation on mixed refrigerants for moderately high temperature heat pump
    Tian, Fukuan
    Zhou, Guobing
    Zhu, Maochuan
    Yang, Fei
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (05): : 229 - 236
  • [25] Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery
    Cao, Xing-Qi
    Yang, Wei-Wei
    Zhou, Fu
    He, Ya-Ling
    APPLIED THERMAL ENGINEERING, 2014, 71 (01) : 291 - 300
  • [26] A Study on Heat Pump Cycles Using Eco-Friendly Refrigerants for the Production of High-Temperature Water br
    Kim, Jin Man
    Kim, Seon-Chang
    Lee, Cheonkyu
    Lee, Jung-Gil
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2022, 46 (10) : 573 - 579
  • [27] HIGH-TEMPERATURE HEAT-PUMP FLUIDS
    BERTINAT, MP
    PHYSICS IN TECHNOLOGY, 1988, 19 (03): : 109 - 113
  • [28] INDUSTRIAL HIGH-TEMPERATURE HEAT PUMP.
    Nakanishi, Takeshi
    Furukawa, Tetsuro
    Sato, Nobukazu
    Shibamoto, Nobuji
    Baba, Hiroshi
    Hitachi Zosen Technical Review, 1981, 42 (01): : 7 - 13
  • [29] Cycle Characteristics of a New High-Temperature Heat Pump Based on Absorption-Compression Revolution
    Sun, Jian
    Qin, Yu
    Liu, Ran
    Wang, Guoshun
    Liu, Dingqun
    Yang, Yongping
    ENERGIES, 2023, 16 (11)
  • [30] Intelligent High-performance Dynamic Control for Two-stage Screw High-temperature Heat Pump System
    Luo, Win-Jet
    Lai, Jin-Chang
    Hsieh, Po-Yuan
    Fasya, Fikri Rahmat
    SENSORS AND MATERIALS, 2018, 30 (11) : 2599 - 2614