Ultra-high-definition underwater image enhancement via dual-domain interactive transformer network

被引:0
|
作者
Li, Weiwei [1 ]
Cao, Feiyuan [2 ,3 ]
Wei, Yiwen [2 ,3 ]
Shi, Zhenghao [4 ]
Jia, Xiuyi [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Guangxi, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[4] Xian Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China
关键词
Dual-branch network; Feature interaction; Ultra-high-definition image; DESIGN;
D O I
10.1007/s13042-024-02379-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proliferation of ultra-high-definition (UHD) imaging device is increasingly being used for underwater image acquisition. However, due to light scattering and underwater impurities, UHD underwater images often suffer from color deviations and edge blurriness. Many studies have attempted to enhance underwater images by integrating frequency domain and spatial domain information. Nonetheless, these approaches often interactively fuse dual-domain features only in the final fusion module, neglecting the complementary and guiding roles of frequency domain and spatial domain features. Additionally, the extraction of dual-domain features is independent of each other, which leads to the sharp advantages and disadvantages of the dual-domain features extracted by these methods. Consequently, these methods impose high demands on the feature fusion capabilities of the fusion module. But in order to handle UHD underwater images, the fusion modules in these methods often stack only a limited number of convolution and activation function operations. This limitation results in insufficient fusion capability, leading to defects in the restoration of edges and colors in the images. To address these issues, we develop a dual-domain interaction network for enhancing UHD underwater images. The network takes into account both frequency domain and spatial domain features to complement and guide each other's feature extraction patterns, and fully integrates the dual-domain features in the model to better recover image details and colors. Specifically, the network consists of a U-shaped structure, where each layer is composed of dual-domain interaction transformer blocks containing interactive multi-head attention and interactive simple gate feed-forward networks. The interactive multi-head attention captures local interaction features of frequency domain and spatial domain information using convolution operation, followed by multi-head attention operation to extract global information of the mixed features. The interactive simple gate feed-forward network further enhances the model's dual-domain interaction capability and cross-dimensional feature extraction ability, resulting in clearer edges and more realistic colors in the images. Experimental results demonstrate that the performance of our proposal in enhancing underwater images is significantly better than existing methods.
引用
收藏
页码:2093 / 2109
页数:17
相关论文
共 50 条
  • [31] UHD Underwater Image Enhancement via Frequency-Spatial Domain Aware Network
    Wei, Yiwen
    Zheng, Zhuoran
    Jia, Xiuyi
    COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 21 - 36
  • [32] An effective transformer based on dual attention fusion for underwater image enhancement
    Hu X.
    Liu J.
    Li H.
    Liu H.
    Xue X.
    PeerJ Computer Science, 2024, 10
  • [33] Epicardial bridge via the coronary sinus musculatures revealed by ultra-high-definition mapping
    Yang, Ying Chi
    Aung, Thein Tun
    Doshi, Hardik
    Bailin, Steven J.
    JOURNAL OF ELECTROCARDIOLOGY, 2020, 61 : 106 - 111
  • [34] TEGAN: Transformer Embedded Generative Adversarial Network for Underwater Image Enhancement
    Zhi Gao
    Jing Yang
    Lu Zhang
    Fengling Jiang
    Xixiang Jiao
    Cognitive Computation, 2024, 16 : 191 - 214
  • [35] Cformer: An underwater image enhancement hybrid network combining convolution and transformer
    Deng, Ruhui
    Zhao, Lei
    Li, Heng
    Liu, Hui
    IET IMAGE PROCESSING, 2023, 17 (13) : 3841 - 3855
  • [36] A transformer-based network for perceptual contrastive underwater image enhancement
    Cheng, Na
    Sun, Zhixuan
    Zhu, Xuanbing
    Wang, Hongyu
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [37] TEGAN: Transformer Embedded Generative Adversarial Network for Underwater Image Enhancement
    Gao, Zhi
    Yang, Jing
    Zhang, Lu
    Jiang, Fengling
    Jiao, Xixiang
    COGNITIVE COMPUTATION, 2024, 16 (01) : 191 - 214
  • [38] Dual-domain faster Fourier convolution based network for MR image reconstruction
    Liu X.
    Pang Y.
    Liu Y.
    Jin R.
    Sun Y.
    Liu Y.
    Xiao J.
    Computers in Biology and Medicine, 2024, 177
  • [39] Convolution-transformer blend pyramid network for underwater image enhancement ☆
    Ma, Lunpeng
    Hong, Dongyang
    Yin, Shibai
    Deng, Wanqiu
    Yang, Yang
    Yang, Yee-Hong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [40] Neural Network-Based Ultra-High-Definition Video Live Streaming Optimization Algorithm
    Feng, Yunning
    Hu, Nan
    Yu, Xiaosheng
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022