CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data Using Normalizing Flows

被引:0
|
作者
Tri Dung Duong [1 ]
Li, Qian [2 ]
Xu, Guandong [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW, Australia
[2] Curtin Univ, Sch Elect Engn Comp & Math Sci, Perth, WA, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Counterfactual explanation; Normalizing flow; Interpretable machine learning;
D O I
10.1007/978-3-031-33377-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactual explanation is a form of interpretable machine learning that generates perturbations on a sample to achieve the desired outcome. The generated samples can act as instructions to guide end users on how to observe the desired results by altering samples. Although state-of-the-art counterfactual explanation methods are proposed to use variational autoencoder (VAE) to achieve promising improvements, they suffer from two major limitations: 1) the counterfactuals generation is prohibitively slow, which prevents algorithms from being deployed in interactive environments; 2) the counterfactual explanation algorithms produce unstable results due to the randomness in the sampling procedure of variational autoencoder. In this work, to address the above limitations, we design a robust and efficient counterfactual explanation framework, namely CeFlow, which utilizes normalizing flows for the mixed-type of continuous and categorical features. Numerical experiments demonstrate that our technique compares favorably to state-of-the-art methods. We release our source code (https://github.com/tridungduong16/fairCE.git) for reproducing the results.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [1] Differentially Private Normalizing Flows for Synthetic Tabular Data Generation
    Lee, Jaewoo
    Kim, Minjung
    Jeong, Yonghyun
    Ro, Youngmin
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7345 - 7353
  • [2] A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
    Barbosa de Oliveira, Raphael Mazzine
    Martens, David
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [3] ROBUST CLASSIFICATION USING HIDDEN MARKOV MODELS AND MIXTURES OF NORMALIZING FLOWS
    Ghosh, Anubhab
    Honore, Antoine
    Liu, Dong
    Henter, Gustav Eje
    Chatterjee, Saikat
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [4] Towards a data-driven model of hadronization using normalizing flows
    Bierlich, Christian
    Ilten, Phil
    Menzo, Tony
    Mrenna, Stephen
    Szewc, Manuel
    Wilkinson, Michael K.
    Youssef, Ahmed
    Zupan, Jure
    [J]. SCIPOST PHYSICS, 2024, 17 (02):
  • [5] Memory-efficient emulation of physical tabular data using quadtree decomposition
    Carlson, Jared
    Couch, Sean
    O'Shea, Brian W.
    Graziani, Carlo
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 64
  • [6] Efficient anomaly detection in tabular cybersecurity data using large language models
    Xiaoyong Zhao
    Xingxin Leng
    Lei Wang
    Ningning Wang
    Yanqiong Liu
    [J]. Scientific Reports, 15 (1)
  • [7] Efficient modeling of trivializing maps for lattice φ4 theory using normalizing flows: A first look at scalability
    Del Debbio, Luigi
    Rossney, Joe Marsh
    Wilson, Michael
    [J]. PHYSICAL REVIEW D, 2021, 104 (09)
  • [8] Low-cost and efficient prediction hardware for tabular data using tiny classifier circuits
    Iordanou, Konstantinos
    Atkinson, Timothy
    Ozer, Emre
    Kufel, Jedrzej
    Aligada, Grace
    Biggs, John
    Brown, Gavin
    Lujan, Mikel
    [J]. NATURE ELECTRONICS, 2024, 7 (05) : 405 - 413
  • [9] A robust and energy-efficient data dissemination framework for wireless sensor networks
    Liu, Wei
    Zhang, Yanchao
    Lou, Wenjing
    Fang, Yuguang
    [J]. WIRELESS NETWORKS, 2006, 12 (04) : 465 - 479
  • [10] A robust and energy-efficient data dissemination framework for wireless sensor networks
    Wei Liu
    Yanchao Zhang
    Wenjing Lou
    Yuguang Fang
    [J]. Wireless Networks, 2006, 12 : 465 - 479