Breaking data barriers: advancing phase prediction in high entropy alloys through a new machine learning framework

被引:1
|
作者
Choudhury, Amitava [1 ]
Kumar, Sandeep [2 ]
机构
[1] Pandit Deendayal Energy Univ, Dept Comp Sci & Engn, Gandhinagar, India
[2] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee, India
关键词
High entropy alloy; machine learning; phase prediction; thermodynamics properties; low dataset; SELECTION; STABILITY;
D O I
10.1080/00084433.2024.2395674
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
High entropy alloys (HEAs) represent a promising ADVANCEMENT in the context of Industry 4.0, embodying the principles of interconnectedness, automation and real-time data. The formation of phases in HEAs is predominantly influenced by the composition of the alloy and its corresponding thermodynamic properties. With an expansive composition space, HEAs exhibit diverse phase formations. While previous research has primarily focused on solid solution features, establishing a direct link between compositions and phase formations is crucial for accelerating the development of novel HEAs. Machine learning algorithms have been extensively employed to predict phases in HEAs; however, their effectiveness relies heavily on the availability of large datasets. Unfortunately, acquiring precise data remains challenging due to the nascent nature of HEA research. In this research article, we propose a novel machine learning algorithm to predict alloy phases, even in scenarios with limited data. The primary objective is establishing a robust relationship between elemental properties and phases, enabling phase predictions based on alloy compositions. Our study achieves an accuracy of 92% using a dataset comprising only 118 samples. The proposed work is compared with state-of-the-art approaches, addressing data scarcity challenges in HEAs and advancing predictive modeling for phase predictions in these alloys. Les alliages & agrave; haute entropie (HEA) repr & eacute;sentent un avancement qui promet dans le contexte de Industry 4.0, incorporant les principes d'interconnectivit & eacute;, d'automatisation et de donn & eacute;es en temps r & eacute;el. La formation de phases dans les HEA est influenc & eacute;e de mani & egrave;re pr & eacute;dominante par la composition de l'alliage et de ses propri & eacute;t & eacute;s thermodynamiques correspondantes. Avec un espace de composition en expansion, les HEA d & eacute;montrent diverses formations de phase. Alors que les recherches ant & eacute;c & eacute;dentes & eacute;taient concentr & eacute;es principalement sur les caract & eacute;ristiques des solutions solides, & eacute;tablir un lien direct entre les compositions et les formations de phases est critique pour acc & eacute;l & eacute;rer le d & eacute;veloppement de nouveaux HEA. On a largement utilis & eacute; les algorithmes d'apprentissage informatique pour pr & eacute;dire les phases dans les HEA; cependant, leur efficacit & eacute; repose fortement sur la disponibilit & eacute; de grands ensembles de donn & eacute;es. Malheureusement, l'acquisition de donn & eacute;es pr & eacute;cises reste un d & eacute;fi en raison de la nature naissante de la recherche des HEA. Dans cet article de recherche, nous proposons un nouvel algorithme d'apprentissage informatique pour pr & eacute;dire les phases de l'alliage, m & ecirc;me dans des sc & eacute;narios avec donn & eacute;es limit & eacute;es. Le premier objectif consiste & agrave; & eacute;tablir une relation robuste entre les propri & eacute;t & eacute;s & eacute;l & eacute;mentaires et les phases, permettant des pr & eacute;dictions de phases bas & eacute;es sur les compositions de l'alliage. Notre & eacute;tude atteint une pr & eacute;cision de 92% en utilisant un ensemble de donn & eacute;es comprenant seulement 118 & eacute;chantillons. En outre, nous comparons la performance de notre algorithme propos & eacute; aux approches de pointe couramment disponibles dans le domaine. En relevant les d & eacute;fis pos & eacute;s par la raret & eacute; des donn & eacute;es dans le domaine des HES, notre recherche contribue & agrave; l'avancement de la mod & eacute;lisation pr & eacute;dictive pour les pr & eacute;dictions de phase dans ces alliages. Ces r & eacute;sultats tracent le chemin & agrave; d'autres explorations et d & eacute;veloppements des HEA, facilitant leur int & eacute;gration dans diverses applications industrielles.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Prediction of phases in high entropy alloys using machine learning
    Bobbili, Ravindranadh
    Ramakrishna, B.
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [22] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [23] An end-to-end machine learning framework exploring phase formation for high entropy alloys
    Zhang, Hui-ran
    Hu, Rui
    Liu, Xi
    LI, Sheng-zhou
    Zhang, Guang-jie
    Qian, Quan
    Ding, Guang-tai
    Dai, Dong-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (07) : 2110 - 2120
  • [24] Machine learning and visualization assisted solid solution strengthening phase prediction of high entropy alloys
    Gao, Sida
    Gao, Zhiyu
    Zhao, Fei
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [25] Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
    Hou, Shuai
    Li, Yujiao
    Bai, Meijuan
    Sun, Mengyue
    Liu, Weiwei
    Wang, Chao
    Tetik, Halil
    Lin, Dong
    MATERIALS, 2022, 15 (09)
  • [26] Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models
    Zhang, Yan
    Wen, Cheng
    Wang, Changxin
    Antonov, Stoichko
    Xue, Dezhen
    Bai, Yang
    Su, Yanjing
    ACTA MATERIALIA, 2020, 185 (185) : 528 - 539
  • [27] Machine learning-based prediction of phases in high-entropy alloys: A data article
    Machaka, Ronald
    Motsi, Glenda T.
    Raganya, Lerato M.
    Radingoana, Precious M.
    Chikosha, Silethelwe
    DATA IN BRIEF, 2021, 38
  • [28] Prediction of mechanical properties of high entropy alloys based on machine learning
    Gao, Tinghong
    Wu, Qingqing
    Chen, Lei
    Liang, Yongchao
    Han, Yunjie
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [29] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, 5 : 531 - 538
  • [30] Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning
    Chang, Huinan
    Tao, Yiwen
    Liaw, Peter K.
    Ren, Jingli
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 921