Edge Vacancy Effects on Magnetic Behavior in Graphene-Like Nanostructure: Monte Carlo Simulations

被引:0
|
作者
El Fdil, R. [1 ]
Sabbah, Hussein [2 ]
Fadil, Z. [1 ]
Raorane, Chaitany Jayprakash [3 ]
Salmani, E. [1 ]
Alsayyari, Abdulrahman A. [4 ]
Saadaoui, S. [5 ]
Ez-zahraouy, H. [1 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, Lab Matiere Condensee Sci Interdisciplinaires LaMC, POB 1014, Rabat, Morocco
[2] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
[3] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
[4] Qassim Univ, Coll Appl Med Sci, Dept Radiol Technol, Buraydah 51452, Saudi Arabia
[5] King Khalid Univ, Appl Coll Mahail Aseer, Abha, Saudi Arabia
关键词
Graphene-like nanostructure; magnetic behavior; edge vacancies; Monte Carlo insights; blocking temperature; MEAN-FIELD THEORY; DIRAC FERMIONS; OXYGEN-VACANCY; 2-DIMENSIONAL MATERIALS; THERMAL-CONDUCTIVITY; ENERGY-STORAGE; NANOMATERIALS; STABILITY; TRANSPORT;
D O I
10.1142/S2010324724500127
中图分类号
O59 [应用物理学];
学科分类号
摘要
This study used Monte Carlo analysis to investigate how edge vacancies impact magnetic behavior in graphene-like nanostructures. The quantity and presence of edge vacancies intricately affected the magnetic response of the system. Moreover, the system displays an increased sensitivity to changes in coupling interaction and external magnetic field. This sensitivity may be due to the low number of atoms in the system. Furthermore, the hysteresis cycle area behavior was found to be influenced by both the temperature and the number of atoms in the system. The tunability and sensitivity of edge vacancies in graphene-like nanostructures hold great promise for innovations and advancements in nanotechnology.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Monte Carlo simulations of interacting magnetic nanoparticles
    Lee, HK
    Shulthess, TC
    Landau, DP
    Brown, G
    Pierce, JP
    Gai, Z
    Farnam, G
    Shen, J
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 6926 - 6928
  • [42] Magnetic, magnetocaloric and critical behavior of the C36 fullerene-like structure using Monte Carlo simulations
    Jabar, A.
    Idrissi, S.
    Bahmad, L.
    MODERN PHYSICS LETTERS B, 2024, 38 (30):
  • [43] Vacancy clustering and diffusion in silicon: Kinetic lattice Monte Carlo simulations
    Haley, Benjamin P.
    Beardmore, Keith M.
    Gronbech-Jensen, Niels
    PHYSICAL REVIEW B, 2006, 74 (04)
  • [44] Acoustic valley edge states in a graphene-like resonator system
    Yang, Yahui
    Yang, Zhaoju
    Zhang, Baile
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (09)
  • [45] Spin wave behavior and resonance frequency of graphene-like magnetic film with six sublattices
    Zhu, Ye
    Li, Chang-Chang
    Si, Nan
    Zhang, Na
    Jiang, Wei
    Guo, An-Bang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 553
  • [46] Exploring Magnetic Attributes: Borospherene-Like and Buckminsterfullerene-Like Lattices in Monte Carlo Simulations
    Fadil, Z.
    Raorane, Chaitany Jayprakash
    Kabouchi, D.
    El Fdil, R.
    Alsayyari, Abdulrahman A.
    Saadaoui, S.
    Kim, Seong-Cheol
    Mhirech, A.
    Salmani, E.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2024, 13 (08)
  • [47] Magnetic Properties of Bilayer Penta-Graphene-Like Nanostructures: A Monte Carlo Study
    Fadil, Z.
    Raorane, Chaitany Jayprakash
    El Fdil, R.
    Kim, Seong Cheol
    Alsayyari, Abdulrahman A.
    Mahmoud, Khaled H.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2025, 14 (03)
  • [48] Fermi Surface Topology Signature on the High Harmonics Generation in Graphene-Like Nanostructure
    B. R. Avchyan
    A. G. Ghazaryan
    K. A. Sargsyan
    Kh. V. Sedrakian
    Journal of Experimental and Theoretical Physics, 2021, 132 : 883 - 891
  • [49] Fermi Surface Topology Signature on the High Harmonics Generation in Graphene-Like Nanostructure
    Avchyan, B. R.
    Ghazaryan, A. G.
    Sargsyan, K. A.
    Sedrakian, Kh. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2021, 132 (06) : 883 - 891
  • [50] Dynamic magnetic properties of Ising graphene-like monolayer
    Lei Sun
    Wei Wang
    Communications in Theoretical Physics, 2020, 72 (11) : 129 - 137