In this study, ultrathin CuAl layered double hydroxide (LDH) nanosheets were successfully deposited on sepiolite clay (SPC) support and used as an effective electrocatalyst for fabrication of a new non-enzymatic glucose sensor. According to a series of electrochemical results, the growth of CuAl LDH on SPC decreases the charge-transfer resistance in the surface of modified carbon paste electrode (CPE). At an optimum potential of + 0.40 V, the CuAl LDH/SPC modified CPE depicted a wide linear range over a concentration of 0.1 to 1450 mu M with a detection limit of 0.03 mu M (S/N = 3). Significantly, the established assay demonstrated a strong resistance to interference from common substances such as fructose, valine, ascorbic acid, urea, L-cysteine, and uric acid. The suggested assay was successfully employed to detect glucose in sport drinks with satisfactory results. The modified electrode with CuAl LDH/SPC presents improved electro-catalytic properties, operating at a lower working potential. It demonstrates rapid response, high stability, and reproducibility in the oxidation of glucose. These features make it a promising candidate for the development of non-enzymatic glucose sensors in the future.