Approximate equivalence of representations of AH algebras into semifinite von Neumann factors

被引:0
|
作者
Shen, Junhao [1 ]
Shi, Rui [2 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Weyl-von Neumann theorem; approximately unitary equivalence; AH algebras; semifinite von Neumann factors; ideals; C-ASTERISK-ALGEBRAS; FREDHOLM THEORIES; CLASSIFICATION; THEOREM;
D O I
10.4171/JNCG/554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a non-commutative version of the Weyl-von Neumann theorem for representations of unital, separable AH algebras into countably decomposable, semifinite, properly infinite, von Neumann factors, where an AH algebra means an approximately homogeneous C *-algebra. We also prove a result for approximate summands of representations of unital, separable AH algebras into finite von Neumann factors.
引用
收藏
页码:1315 / 1348
页数:34
相关论文
共 50 条
  • [1] APPROXIMATE EQUIVALENCE OF REPRESENTATIONS OF AF ALGEBRAS INTO SEMIFINITE VON NEUMANN ALGEBRAS
    Wen, Shilin
    Fang, Junsheng
    Shi, Rui
    OPERATORS AND MATRICES, 2019, 13 (03): : 777 - 795
  • [2] Approximate equivalence in von Neumann algebras
    DING Huiru & Don Hadwin Department of Mathematics
    Science China Mathematics, 2005, (02) : 239 - 247
  • [3] APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS
    Li, Qihui
    Hadwin, Don
    Liu, Wenjing
    OPERATORS AND MATRICES, 2023, 17 (01): : 1 - 23
  • [4] Approximate equivalence in von Neumann algebras
    Huiru Ding
    Don Hadwin
    Science in China Series A: Mathematics, 2005, 48 : 239 - 247
  • [5] Approximate equivalence in von Neumann algebras
    Ding, HR
    Hadwin, D
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (02): : 239 - 247
  • [6] A NOTE ON REPRESENTATIONS OF COMMUTATIVE C*-ALGEBRAS IN SEMIFINITE VON NEUMANN ALGEBRAS
    Hadwin, Don
    Shi, Rui
    OPERATORS AND MATRICES, 2018, 12 (04): : 1129 - 1144
  • [7] A Banach Principle Semifinite von Neumann Algebras
    Chilin, Vladimir
    Litvinov, Semyon
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [8] Singular traces on semifinite von Neumann algebras
    Guido, D
    Isola, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (02) : 451 - 485
  • [9] On a property of Lp spaces on semifinite von Neumann algebras
    Bikchentaev, AM
    MATHEMATICAL NOTES, 1998, 64 (1-2) : 159 - 163
  • [10] On a property ofLp spaces on semifinite von Neumann algebras
    A. M. Bikchentaev
    Mathematical Notes, 1998, 64 : 159 - 163