Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial

被引:0
|
作者
Adedinsewo, Demilade A. [1 ]
Morales-Lara, Andrea Carolina [1 ]
Afolabi, Bosede B. [2 ,3 ]
Kushimo, Oyewole A. [4 ]
Mbakwem, Amam C. [4 ]
Ibiyemi, Kehinde F. [5 ]
Ogunmodede, James Ayodele [6 ]
Raji, Hadijat Olaide [5 ]
Ringim, Sadiq H. [7 ]
Habib, Abdullahi A. [8 ]
Hamza, Sabiu M. [7 ]
Ogah, Okechukwu S. [9 ]
Obajimi, Gbolahan [10 ]
Saanu, Olugbenga Oluseun [10 ]
Jagun, Olusoji E. [11 ]
Inofomoh, Francisca O. [12 ]
Adeolu, Temitope [12 ]
Karaye, Kamilu M. [13 ,14 ]
Gaya, Sule A. [14 ,15 ]
Alfa, Isiaka [13 ,14 ]
Yohanna, Cynthia [16 ]
Venkatachalam, K. L. [1 ]
Dugan, Jennifer [17 ]
Yao, Xiaoxi [17 ,18 ]
Sledge, Hanna J. [19 ]
Johnson, Patrick W. [19 ]
Wieczorek, Mikolaj A. [19 ]
Attia, Zachi I. [17 ]
Phillips, Sabrina D. [1 ]
Yamani, Mohamad H. [1 ]
Tobah, Yvonne Butler [20 ]
Rose, Carl H. [20 ]
Sharpe, Emily E. [21 ]
Lopez-Jimenez, Francisco [17 ]
Friedman, Paul A. [17 ]
Noseworthy, Peter A. [17 ]
Carter, Rickey E. [19 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Jacksonville, FL 32224 USA
[2] Univ Lagos, Dept Obstet & Gynaecol, Coll Med, Lagos, Nigeria
[3] Univ Lagos, Ctr Clin Trials Res & Implementat Sci, Lagos, Nigeria
[4] Lagos Univ Teaching Hosp, Dept Med, Cardiol Unit, Lagos, Nigeria
[5] Univ Ilorin, Teaching Hosp, Dept Obstet & Gynaecol, Ilorin, Nigeria
[6] Univ Ilorin, Dept Med, Ilorin, Nigeria
[7] Rasheed Shekoni Specialist Hosp, Dept Med, Dutse, Nigeria
[8] Rasheed Sekoni Specialist Hosp, Dept Obstet & Gynaecol, Dutse, Nigeria
[9] Univ Ibadan, Dept Med, Oyo, Nigeria
[10] Univ Coll Hosp, Dept Obstet & Gynaecol, Ibadan, Oyo, Nigeria
[11] Olabisi Onabanjo Univ Teaching Hosp, Dept Obstet & Gynaecol, Shagamu, Nigeria
[12] Olabisi Onabanjo Univ, Teaching Hosp, Dept Med, Cardiol Unit, Shagamu, Nigeria
[13] Bayero Univ, Dept Med, Kano, Nigeria
[14] Aminu Kano Teaching Hosp, Kano, Nigeria
[15] Bayero Univ Kano, Dept Obstet & Gynaecol, Kano, Nigeria
[16] Lakeside Healthcare Yaxley, Hlth Ctr, Peterborough, England
[17] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[18] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deliv, Rochester, MN USA
[19] Mayo Clin, Dept Quantitat Hlth Sci, Jacksonville, FL USA
[20] Mayo Clin, Dept Obstet & Gynecol, Rochester, MN USA
[21] Mayo Clin, Dept Anesthesiol & Perioperat Med, Rochester, MN USA
关键词
PERIPARTUM CARDIOMYOPATHY; EJECTION FRACTION; PREGNANCY; OUTCOMES;
D O I
10.1038/s41591-024-03243-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nigeria has the highest reported incidence of peripartum cardiomyopathy worldwide. This open-label, pragmatic clinical trial randomized pregnant and postpartum women to usual care or artificial intelligence (AI)-guided screening to assess its impact on the diagnosis left ventricular systolic dysfunction (LVSD) in the perinatal period. The study intervention included digital stethoscope recordings with point of-care AI predictions and a 12-lead electrocardiogram with asynchronous AI predictions for LVSD. The primary end point was identification of LVSD during the study period. In the intervention arm, the primary end point was defined as the number of identified participants with LVSD as determined by a positive AI screen, confirmed by echocardiography. In the control arm, this was the number of participants with clinical recognition and documentation of LVSD on echocardiography in keeping with current standard of care. Participants in the intervention arm had a confirmatory echocardiogram at baseline for AI model validation. A total of 1,232 (616 in each arm) participants were randomized and 1,195 participants (587 intervention arm and 608 control arm) completed the baseline visit at 6 hospitals in Nigeria between August 2022 and September 2023 with follow-up through May 2024. Using the AI-enabled digital stethoscope, the primary study end point was met with detection of 24 out of 587 (4.1%) versus 12 out of 608 (2.0%) patients with LVSD (intervention versus control odds ratio 2.12, 95% CI 1.05-4.27; P = 0.032). With the 12-lead AI-electrocardiogram model, the primary end point was detected in 20 out of 587 (3.4%) versus 12 out of 608 (2.0%) patients (odds ratio 1.75, 95% CI 0.85-3.62; P = 0.125). A similar direction of effect was observed in prespecified subgroup analysis. There were no serious adverse events related to study participation. In pregnant and postpartum women, AI-guided screening using a digital stethoscope improved the diagnosis of pregnancy-related cardiomyopathy. ClinicalTrials.gov registration: NCT05438576 In this pragmatic, randomized clinical trial involving 1,196 pregnant and postpartum women from 6 hospitals in Nigeria, AI-based electrocardiogram screening proved accurate in detecting cardiomyopathies and suggests that it could improve detection of these conditions.
引用
收藏
页码:2897 / 2906
页数:17
相关论文
共 50 条
  • [31] IMPACT OF ARTIFICIAL INTELLIGENCE ON MISS RATE OF COLORECTAL NEOPLASIA: A RANDOMIZED TANDEM CLINICAL TRIAL
    Wallace, Michael B.
    Sharma, Prateek
    Bhandari, Pradeep
    East, James E.
    Antonelli, Giulio
    Lorenzetti, Roberto
    Vieth, Michael
    Speranza, Ilaria
    Spadaccini, Marco
    Desai, Madhav
    Lukens, Frank
    Babameto, Genci
    Batista, Daisy D.
    Palmer, William C.
    Lunsford, Tisha
    Ruff, Kevin C.
    Bird-Liebermann, Elizabeth L.
    Ciofoaia, Victor
    Arndtz, Sophie
    Cangemi, David
    Puddick, Kristy
    Derfus, Gregory
    Johal, Amitpal S.
    Barawi, Mohammed
    Longo, Luigi
    Repici, Alessandro
    Hassan, Cesare
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (06) : AB180 - AB180
  • [32] Artificial intelligence empowers the second-observer strategy for colonoscopy: a randomized clinical trial
    Wang, Pu
    Liu, Xiao-Gang
    Kang, Min
    Peng, Xue
    Shu, Mei-Ling
    Zhou, Guan-Yu
    Liu, Pei-Xi
    Xiong, Fei
    Deng, Ming-Ming
    Xia, Hong-Fen
    Li, Jian-Jun
    Long, Xiao-Qi
    Song, Yan
    Li, Liang-Ping
    GASTROENTEROLOGY REPORT, 2023, 11
  • [33] Effectiveness of screening for tuberculosis in HIV: a pragmatic clinical trial
    Santos, Marcela Lopes
    Lyra Batista, Joanna d'Arc
    Braga, Cynthia
    da Silva, Adriana Paula
    Maruza, Magda
    Souza, Wayner Vieira
    de Carvalho, Maria Rosimery
    de Siqueira-Filha, Noemia Teixeira
    Pessoa Militao de Albuquerque, Maria de Fatima
    REVISTA DE SAUDE PUBLICA, 2021, 55 : 1 - 11
  • [34] Conventional Versus Artificial Intelligence-Assisted Interpretation of Chest Radiographs in Patients With Acute Respiratory Symptoms in Emergency Department: A Pragmatic Randomized Clinical Trial
    Hwang, Eui Jin
    Goo, Jin Mo
    Nam, Ju Gang
    Park, Chang Min
    Hong, Ki Jeong
    Kim, Ki Hong
    KOREAN JOURNAL OF RADIOLOGY, 2023, 24 (03) : 259 - 270
  • [35] Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial
    Seol, Hee Yun
    Shrestha, Pragya
    Muth, Joy Fladager
    Wi, Chung-Il
    Sohn, Sunghwan
    Ryu, Euijung
    Park, Miguel
    Ihrke, Kathy
    Moon, Sungrim
    King, Katherine
    Wheeler, Philip
    Borah, Bijan
    Moriarty, James
    Rosedahl, Jordan
    Liu, Hongfang
    McWilliams, Deborah B.
    Juhn, Young J.
    PLOS ONE, 2021, 16 (08):
  • [36] Application effect of an artificial intelligence-based fundus screening system: evaluation in a clinical setting and population screening
    Cao, Shujuan
    Zhang, Rongpei
    Jiang, Aixin
    Kuerban, Mayila
    Wumaier, Aizezi
    Wu, Jianhua
    Xie, Kaihua
    Aizezi, Mireayi
    Tuersun, Abudurexiti
    Liang, Xuanwei
    Chen, Rongxin
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [37] Application effect of an artificial intelligence-based fundus screening system: evaluation in a clinical setting and population screening
    Shujuan Cao
    Rongpei Zhang
    Aixin Jiang
    Mayila Kuerban
    Aizezi Wumaier
    Jianhua Wu
    Kaihua Xie
    Mireayi Aizezi
    Abudurexiti Tuersun
    Xuanwei Liang
    Rongxin Chen
    BioMedical Engineering OnLine, 22
  • [38] Population-Based Colonoscopy Screening for Colorectal Cancer A Randomized Clinical Trial
    Bretthauer, Michael
    Kaminski, Michal F.
    Loberg, Magnus
    Zauber, Ann G.
    Regula, Jaroslaw
    Kuipers, Ernst J.
    Hernan, Miguel A.
    McFadden, Eleanor
    Sunde, Annike
    Kalager, Mette
    Dekker, Evelien
    Lansdorp-Vogelaar, Iris
    Garborg, Kjetil
    Rupinski, Maciej
    Spaander, Manon C. W.
    Bugajski, Marek
    Hoie, Ole
    Stefansson, Tryggvi
    Hoff, Geir
    Adami, Hans-Olov
    JAMA INTERNAL MEDICINE, 2016, 176 (07) : 894 - 902
  • [39] ECG Al-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial
    Yao, Xiaoxi
    McCoy, Rozalina G.
    Friedman, Paul A.
    Shah, Nilay D.
    Barry, Barbara A.
    Behnken, Emma M.
    Inselman, Jonathan W.
    Attia, Zachi, I
    Noseworthy, Peter A.
    AMERICAN HEART JOURNAL, 2020, 219 : 31 - 36
  • [40] Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study
    Haddad, Tufia
    Helgeson, Jane M.
    Pomerleau, Katharine E.
    Preininger, Anita M.
    Roebuck, M. Christopher
    Dankwa-Mullan, Irene
    Jackson, Gretchen Purcell
    Goetz, Matthew P.
    JMIR MEDICAL INFORMATICS, 2021, 9 (03)