Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial

被引:0
|
作者
Adedinsewo, Demilade A. [1 ]
Morales-Lara, Andrea Carolina [1 ]
Afolabi, Bosede B. [2 ,3 ]
Kushimo, Oyewole A. [4 ]
Mbakwem, Amam C. [4 ]
Ibiyemi, Kehinde F. [5 ]
Ogunmodede, James Ayodele [6 ]
Raji, Hadijat Olaide [5 ]
Ringim, Sadiq H. [7 ]
Habib, Abdullahi A. [8 ]
Hamza, Sabiu M. [7 ]
Ogah, Okechukwu S. [9 ]
Obajimi, Gbolahan [10 ]
Saanu, Olugbenga Oluseun [10 ]
Jagun, Olusoji E. [11 ]
Inofomoh, Francisca O. [12 ]
Adeolu, Temitope [12 ]
Karaye, Kamilu M. [13 ,14 ]
Gaya, Sule A. [14 ,15 ]
Alfa, Isiaka [13 ,14 ]
Yohanna, Cynthia [16 ]
Venkatachalam, K. L. [1 ]
Dugan, Jennifer [17 ]
Yao, Xiaoxi [17 ,18 ]
Sledge, Hanna J. [19 ]
Johnson, Patrick W. [19 ]
Wieczorek, Mikolaj A. [19 ]
Attia, Zachi I. [17 ]
Phillips, Sabrina D. [1 ]
Yamani, Mohamad H. [1 ]
Tobah, Yvonne Butler [20 ]
Rose, Carl H. [20 ]
Sharpe, Emily E. [21 ]
Lopez-Jimenez, Francisco [17 ]
Friedman, Paul A. [17 ]
Noseworthy, Peter A. [17 ]
Carter, Rickey E. [19 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Jacksonville, FL 32224 USA
[2] Univ Lagos, Dept Obstet & Gynaecol, Coll Med, Lagos, Nigeria
[3] Univ Lagos, Ctr Clin Trials Res & Implementat Sci, Lagos, Nigeria
[4] Lagos Univ Teaching Hosp, Dept Med, Cardiol Unit, Lagos, Nigeria
[5] Univ Ilorin, Teaching Hosp, Dept Obstet & Gynaecol, Ilorin, Nigeria
[6] Univ Ilorin, Dept Med, Ilorin, Nigeria
[7] Rasheed Shekoni Specialist Hosp, Dept Med, Dutse, Nigeria
[8] Rasheed Sekoni Specialist Hosp, Dept Obstet & Gynaecol, Dutse, Nigeria
[9] Univ Ibadan, Dept Med, Oyo, Nigeria
[10] Univ Coll Hosp, Dept Obstet & Gynaecol, Ibadan, Oyo, Nigeria
[11] Olabisi Onabanjo Univ Teaching Hosp, Dept Obstet & Gynaecol, Shagamu, Nigeria
[12] Olabisi Onabanjo Univ, Teaching Hosp, Dept Med, Cardiol Unit, Shagamu, Nigeria
[13] Bayero Univ, Dept Med, Kano, Nigeria
[14] Aminu Kano Teaching Hosp, Kano, Nigeria
[15] Bayero Univ Kano, Dept Obstet & Gynaecol, Kano, Nigeria
[16] Lakeside Healthcare Yaxley, Hlth Ctr, Peterborough, England
[17] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[18] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deliv, Rochester, MN USA
[19] Mayo Clin, Dept Quantitat Hlth Sci, Jacksonville, FL USA
[20] Mayo Clin, Dept Obstet & Gynecol, Rochester, MN USA
[21] Mayo Clin, Dept Anesthesiol & Perioperat Med, Rochester, MN USA
关键词
PERIPARTUM CARDIOMYOPATHY; EJECTION FRACTION; PREGNANCY; OUTCOMES;
D O I
10.1038/s41591-024-03243-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nigeria has the highest reported incidence of peripartum cardiomyopathy worldwide. This open-label, pragmatic clinical trial randomized pregnant and postpartum women to usual care or artificial intelligence (AI)-guided screening to assess its impact on the diagnosis left ventricular systolic dysfunction (LVSD) in the perinatal period. The study intervention included digital stethoscope recordings with point of-care AI predictions and a 12-lead electrocardiogram with asynchronous AI predictions for LVSD. The primary end point was identification of LVSD during the study period. In the intervention arm, the primary end point was defined as the number of identified participants with LVSD as determined by a positive AI screen, confirmed by echocardiography. In the control arm, this was the number of participants with clinical recognition and documentation of LVSD on echocardiography in keeping with current standard of care. Participants in the intervention arm had a confirmatory echocardiogram at baseline for AI model validation. A total of 1,232 (616 in each arm) participants were randomized and 1,195 participants (587 intervention arm and 608 control arm) completed the baseline visit at 6 hospitals in Nigeria between August 2022 and September 2023 with follow-up through May 2024. Using the AI-enabled digital stethoscope, the primary study end point was met with detection of 24 out of 587 (4.1%) versus 12 out of 608 (2.0%) patients with LVSD (intervention versus control odds ratio 2.12, 95% CI 1.05-4.27; P = 0.032). With the 12-lead AI-electrocardiogram model, the primary end point was detected in 20 out of 587 (3.4%) versus 12 out of 608 (2.0%) patients (odds ratio 1.75, 95% CI 0.85-3.62; P = 0.125). A similar direction of effect was observed in prespecified subgroup analysis. There were no serious adverse events related to study participation. In pregnant and postpartum women, AI-guided screening using a digital stethoscope improved the diagnosis of pregnancy-related cardiomyopathy. ClinicalTrials.gov registration: NCT05438576 In this pragmatic, randomized clinical trial involving 1,196 pregnant and postpartum women from 6 hospitals in Nigeria, AI-based electrocardiogram screening proved accurate in detecting cardiomyopathies and suggests that it could improve detection of these conditions.
引用
收藏
页码:2897 / 2906
页数:17
相关论文
共 50 条
  • [1] A Pragmatic, Randomized Clinical Trial of Gestational Diabetes Screening
    Hillier, Teresa A.
    Pedula, Kathryn L.
    Ogasawara, Keith K.
    Vesco, Kimberly K.
    Oshiro, Caryn E. S.
    Lubarsky, Suzanne L.
    Van Marter, Jan
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (10): : 895 - 904
  • [2] A Pragmatic, Randomized Clinical Trial of Gestational Diabetes Screening
    Caughey, Aaron B.
    OBSTETRICAL & GYNECOLOGICAL SURVEY, 2021, 76 (08) : 460 - 461
  • [3] Applying an Artificial Intelligence-Enabled Electrocardiographic System for Reducing Mortality: A Pragmatic Randomized Clinical Trial
    Lin, Chin
    Lin, Chin-Sheng
    Liu, Wei-Ting
    CIRCULATION, 2023, 148
  • [4] Artificial intelligence predictive analytics in heart failure: results of the pilot phase of a pragmatic randomized clinical trial
    Sideris, Konstantinos
    Weir, Charlene R.
    Schmalfuss, Carsten
    Hanson, Heather
    Pipke, Matt
    Tseng, Po-He
    Lewis, Neil
    Sallam, Karim
    Bozkurt, Biykem
    Hanff, Thomas
    Schofield, Richard
    Larimer, Karen
    Kyriakopoulos, Christos P.
    Taleb, Iosif
    Brinker, Lina
    Curry, Tempa
    Knecht, Cheri
    Butler, Jorie M.
    Stehlik, Josef
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (04) : 919 - 928
  • [5] Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial
    Xiaoxi Yao
    David R. Rushlow
    Jonathan W. Inselman
    Rozalina G. McCoy
    Thomas D. Thacher
    Emma M. Behnken
    Matthew E. Bernard
    Steven L. Rosas
    Abdulla Akfaly
    Artika Misra
    Paul E. Molling
    Joseph S. Krien
    Randy M. Foss
    Barbara A. Barry
    Konstantinos C. Siontis
    Suraj Kapa
    Patricia A. Pellikka
    Francisco Lopez-Jimenez
    Zachi I. Attia
    Nilay D. Shah
    Paul A. Friedman
    Peter A. Noseworthy
    Nature Medicine, 2021, 27 : 815 - 819
  • [6] Screening for peripartum cardiomyopathies using artificial intelligence in Nigeria (SPEC-AI Nigeria): Clinical trial rationale and design
    Adedinsewo, Demilade A.
    Morales-Lara, Andrea Carolina
    Dugan, Jennifer
    Garzon-Siatoya, Wendy T.
    Yao, Xiaoxi
    Johnson, Patrick W.
    Douglass, Erika J.
    Attia, Zachi I.
    Phillips, Sabrina D.
    Yamani, Mohamad H.
    Tobah, Yvonne Butler
    Rose, Carl H.
    Sharpe, Emily E.
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Noseworthy, Peter A.
    Carter, Rickey E.
    AMERICAN HEART JOURNAL, 2023, 261 : 64 - 74
  • [7] Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial
    Yao, Xiaoxi
    Rushlow, David R.
    Inselman, Jonathan W.
    McCoy, Rozalina G.
    Thacher, Thomas D.
    Behnken, Emma M.
    Bernard, Matthew E.
    Rosas, Steven L.
    Akfaly, Abdulla
    Misra, Artika
    Molling, Paul E.
    Krien, Joseph S.
    Foss, Randy M.
    Barry, Barbara A.
    Siontis, Konstantinos C.
    Kapa, Suraj
    Pellikka, Patricia A.
    Lopez-Jimenez, Francisco
    Attia, Zachi I.
    Shah, Nilay D.
    Friedman, Paul A.
    Noseworthy, Peter A.
    NATURE MEDICINE, 2021, 27 (05) : 815 - +
  • [8] Artificial Intelligence Applied to Cardiomyopathies: Is It Time for Clinical Application?
    Kim, Kyung-Hee
    Kwon, Joon-Myung
    Pereira, Tara
    Attia, Zachi, I
    Pereira, Naveen L.
    CURRENT CARDIOLOGY REPORTS, 2022, 24 (11) : 1547 - 1555
  • [9] Artificial Intelligence Applied to Cardiomyopathies: Is It Time for Clinical Application?
    Kyung-Hee Kim
    Joon-Myung Kwon
    Tara Pereira
    Zachi I. Attia
    Naveen L. Pereira
    Current Cardiology Reports, 2022, 24 : 1547 - 1555
  • [10] "A Pragmatic, Randomized Clinical Trial of Gestational Diabetes Screening" - An Interdisciplinary Statement
    Schaefer-Graf, Ute Margaretha
    Adamczewski, Heinke
    Grieshop, Mellita
    Groten, Tanja
    Hummel, Michael
    Hummel, Sandra
    Kautzky-Willer, Alexandra
    Kuehnert, Maritta
    Laubner, Katharina
    Schild, Ralf
    Stupin, Jens H.
    Schmidt, Markus
    Weschenfelder, Friederike
    Abou-Dakn, Michael
    DIABETOLOGIE UND STOFFWECHSEL, 2021, 16 (05) : 369 - 371