An Iterative Algorithm for Quaternion Eigenvalue Problems in Signal Processing

被引:0
|
作者
Diao, Qiankun [1 ]
Liu, Jinlan [2 ]
Zhang, Naimin [3 ]
Xu, Dongpo [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun 130024, Peoples R China
[2] Changchun Normal Univ, Dept Math, Changchun 130032, Peoples R China
[3] Wenzhou Univ, Sch Math & Informat Sci, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternions; Eigenvalues and eigenfunctions; Signal processing algorithms; Calculus; Optimization; Convergence; Accuracy; Fetal electrocardiograms; GHR calculus; principal eigenvalues; quaternion Hermitian matrix; quaternion projected gradient ascent; MATRICES;
D O I
10.1109/LSP.2024.3459640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a quaternion projection gradient ascent (QPGA) iterative algorithm based on generalized HR calculus for computing the principal eigenvalues and its eigenvectors of quaternion Hermitian matrices. We also prove the convergence of the QPGA algorithm, demonstrating that the estimated sequence of principal eigenvalues is monotonically increasing. Numerical experiments demonstrate the superiority of the proposed iterative method over traditional algebraic methods in terms of accuracy and speed, as well as the application of principal eigenvalues and their eigenvectors obtained by the QPGA algorithm in denoising with quaternion principal component analysis and quaternion least mean square (QLMS) algorithms in filtering fetal electrocardiograms. Overall, the fast quaternion eigenvalue solving method provides a novel and effective technical tool for quaternion signal processing.
引用
收藏
页码:2505 / 2509
页数:5
相关论文
共 50 条
  • [21] ITERATIVE METHODS FOR NEUTRON TRANSPORT EIGENVALUE PROBLEMS
    Scheben, Fynn
    Graham, Ivan G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2785 - 2804
  • [22] Three dimensional signal processing based on quaternion
    Yamamoto, H
    Aoshima, N
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1420 - 1424
  • [23] Quaternion Digital Signal Processing: a Hypercomplex Approach to Information Processing
    Ortolani, Francesca
    Uncini, Aurelio
    2016 INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS (SIBCON), 2016,
  • [24] TURBO ITERATIVE SIGNAL PROCESSING
    Sun, Hong
    Maitre, Henri
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 495 - +
  • [25] Iterative Signal Processing in Communications
    Schlegel, Christian
    Hoeher, Peter
    Axelsson, Owe
    Perez, Lance
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2010, 2010
  • [26] Eigenvalue-free iterative shrinkage-thresholding algorithm for solving the linear inverse problems
    Tong, Can
    Teng, Yueyang
    Yao, Yudong
    Qi, Shouliang
    Li, Chen
    Zhang, Tie
    INVERSE PROBLEMS, 2021, 37 (06)
  • [27] A new structure-preserving method for quaternion Hermitian eigenvalue problems
    Jia, Zhigang
    Wei, Musheng
    Ling, Sitao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 12 - 24
  • [28] A Data Driven Empirical Iterative Algorithm for GSR Signal Pre-Processing
    Gautam, Arvind
    Simoes-Capela, Neide
    Schiavone, Giuseppina
    Acharyya, Amit
    de Raedt, Walter
    Van Hoof, Chris
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1162 - 1166
  • [29] Study on Signal Processing of Electro-Hydraulic Actuator for Iterative Control Algorithm
    Baek, Seung-Guk
    Choi, Jong Yoon
    Lee, Kyeong Ha
    Moon, Hyungpil
    Choi, Hyouk Ryeol
    Koo, Ja Choon
    2014 IEEE/ASME 10TH INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2014), 2014,
  • [30] Julia sets in iterative KAM methods for eigenvalue problems
    Govin, M
    Jauslin, HR
    Cibils, M
    CHAOS SOLITONS & FRACTALS, 1998, 9 (11) : 1835 - 1846