Fine-tuning Pipeline for Hand Image Generation Using Diffusion Model

被引:0
|
作者
Bai, Bingyuan [1 ]
Xie, Haoran [1 ]
Miyata, Kazunori [1 ]
机构
[1] Japan Adv Inst Sci & Technol JAIST, Nomi, Japan
关键词
text-to-image; hand inpainting; stable diffusion; ControlNet; LoRA;
D O I
10.1109/NICOInt62634.2024.00020
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The hand images generated by the image generative model may suffer distortions, such as stable diffusion. To solve this issue, we introduce a hand image fine-tuning pipeline consisting of three stages: hand detection, object masking, and image inpainting. First, a hand detection model is trained to identify flawed hands using bounding boxes (Bbox). Then, these Bbox regions are masked in conjunction with Mediapipe landmarks. Finally, a ControlNet model is trained for inpainting the masked areas, and the targeted LoRA is also trained to minimize boundary fragmentation. The results indicate that our method achieves better anatomical accuracy in hand reconstruction compared to the original diffusion model. Furthermore, the introduction of the directional LoRA model further enhances the evaluation outcomes.
引用
收藏
页码:58 / 63
页数:6
相关论文
共 50 条
  • [21] SVDiff : Compact Parameter Space for Diffusion Fine-Tuning
    Han, Ligong
    Li, Yinxiao
    Zhang, Han
    Milanfar, Peyman
    Metaxas, Dimitris
    Yang, Feng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 7289 - 7300
  • [22] Model adaptive parameter fine-tuning Based on contribution measure for image classification
    Feng, Le
    Feng, Fujian
    Yang, Yuan
    Tan, Mian
    Wang, Lin
    NEUROCOMPUTING, 2025, 632
  • [23] Fine-Tuning a Large Language Model with Reinforcement Learning for Educational Question Generation
    Lamsiyah, Salima
    El Mahdaouy, Abdelkader
    Nourbakhsh, Aria
    Schommer, Christoph
    ARTIFICIAL INTELLIGENCE IN EDUCATION, PT I, AIED 2024, 2024, 14829 : 424 - 438
  • [24] Subject-Diffusion: Open Domain Personalized Text-to-Image Generation without Test-time Fine-tuning
    Ma, Jian
    Liang, Junhao
    Chen, Chen
    Lu, Haonan
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [25] Fine-Tuning CNN Image Retrieval with No Human Annotation
    Radenovic, Filip
    Tolias, Giorgos
    Chum, Ondrej
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) : 1655 - 1668
  • [26] Forest Image Classification Based on Fine-Tuning CaffeNet
    Zhang G.
    Li Y.
    Wang H.
    Zhou H.
    Linye Kexue/Scientia Silvae Sinicae, 2020, 56 (10): : 121 - 128
  • [27] FINE-TUNING THE SIGNAL: IMAGE AND IDENTITY AT THE FEDERAL RESERVE
    Abolafia, Mitchel Y.
    Hatmaker, Deneen M.
    INTERNATIONAL PUBLIC MANAGEMENT JOURNAL, 2013, 16 (04) : 532 - 556
  • [28] Fast American Sign Language Image Recognition Using CNNs with Fine-tuning
    Cui, Qi
    Zhou, Zhili
    Yuan, Chengsheng
    Sun, Xingming
    Wu, Q. M. Jonathan
    JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (07): : 2206 - 2213
  • [29] AN INFLATIONARY MODEL WITHOUT FINE-TUNING OR SUPERSYMMETRY
    SHER, M
    PHYSICS LETTERS B, 1983, 124 (05) : 329 - 332
  • [30] FedDD: A Federated Fine-Tuning Diffusion Model for Low-count PET Denoising
    Zhou, Yinchi
    Xie, Huidong
    Zhou, Bo
    Wang, Hanzhong
    Li, Biao
    Rominger, Axel
    Shi, Kuangyu
    Liu, Chi
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65