DEFINING OVEREATING PHENOTYPES IN NATURALISTIC SETTINGS: LEVERAGING MOBILE HEALTH AND MACHINE LEARNING

被引:0
|
作者
Shahabi, Farzad [1 ]
Romano, Christopher [1 ]
Wei, Boyang [1 ]
Pedram, Mahdi [2 ]
Pfammatter, Angela F. [3 ]
Lin, Annie W. [4 ]
Stump, Tammy [5 ]
Alshurafa, Nabil [1 ]
机构
[1] Northwestern Univ, Chicago, IL USA
[2] Depaul Univ, Chicago, IL USA
[3] Univ Tennessee, Knoxville, TN USA
[4] Univ Minnesota, Austin, MN USA
[5] Univ Utah, Salt Lake City, UT USA
关键词
D O I
暂无
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
kaae014.04
引用
收藏
页码:S248 / S248
页数:1
相关论文
共 50 条
  • [41] Leveraging Digital Health and Machine Learning Toward Reducing Suicide-From Panacea to Practical Tool
    Torous, John
    Walker, Rheeda
    JAMA PSYCHIATRY, 2019, 76 (10) : 999 - 1000
  • [42] Predictive Analytics in Mental Health Leveraging LLM Embeddings and Machine Learning Models for Social Media Analysis
    Radwan, Ahmad
    Amarneh, Mohannad
    Alawneh, Hussam
    Ashqar, Huthaifa I.
    AlSobeh, Anas
    Magableh, Aws Abed Al Raheem
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2024, 21 (01) : 1 - 22
  • [43] Leveraging machine learning for efficient EV integration as mobile battery energy storage systems: Exploring strategic frameworks and incentives
    Salehpour, Mohammad Javad
    Hossain, M. J.
    JOURNAL OF ENERGY STORAGE, 2024, 92
  • [44] m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics
    Istepanian, Robert S. H.
    Al-Anzi, Turki
    METHODS, 2018, 151 : 34 - 40
  • [45] Machine Learning and Mobile Health Monitoring Platforms: A Case Study on Research and Implementation Challenges
    Boursalie O.
    Samavi R.
    Doyle T.E.
    Journal of Healthcare Informatics Research, 2018, 2 (1-2) : 179 - 203
  • [46] Practical approaches in evaluating validation and biases of machine learning applied to mobile health studies
    Allgaier, Johannes
    Pryss, Ruediger
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [47] A Machine Learning Framework for Edge Computing to Improve Prediction Accuracy in Mobile Health Monitoring
    Ram, Sigdel Shree
    Apduhan, Bernady
    Shiratori, Norio
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT III: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PART III, 2019, 11621 : 417 - 431
  • [48] Predictors of perceived symptom change with acute cannabis use for mental health conditions in a naturalistic sample: A machine learning approach
    Kuhathasan, Nirushi
    Ballester, Pedro L.
    Minuzzi, Luciano
    MacKillop, James
    Frey, Benicio N.
    COMPREHENSIVE PSYCHIATRY, 2023, 122
  • [49] The infant health effects of doulas: Leveraging big data and machine learning to inform cost-effective targeting
    Peet, Evan D.
    Schultz, Dana
    Lovejoy, Susan
    Tsui, Fuchiang
    HEALTH ECONOMICS, 2024, 33 (06) : 1387 - 1411
  • [50] Leveraging machine learning on the role of hospitalizations in the dynamics of dengue spread in Brazil: an ecological study of health systems resilience
    de Castro-Nunes, Paula
    Palmieri, Paloma
    Simoes, Patricia Passos
    de Carvalho, Paulo Victor Rodrigues
    Jatoba, Alessandro
    LANCET REGIONAL HEALTH-AMERICAS, 2025, 44