Cellulose-based thermoelectric composites: A review on mechanism, strategies and applications

被引:0
|
作者
Cheng, Heli [1 ]
Wang, Zhenyu [1 ]
Guo, Zejiang [1 ]
Lou, Jiang [2 ]
Han, Wenjia [2 ]
Rao, Jun [3 ]
Peng, Feng [3 ,4 ]
机构
[1] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, Wuhan 430068, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Peoples R China
[3] Beijing Forestry Univ, MOE Engn Res Ctr Forestry Biomass Mat & Bioenergy, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
[4] State Key Lab Efficient Prod Forest Resources, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Thermoelectric composites; Paper/film; Hydrogel; Energy storage; Sensing; THERMO-ELECTROCHEMICAL CELLS; BISMUTH TELLURIDE; POWER-GENERATION; WASTE HEAT; PERFORMANCE; INSULATION; POLYMERS; AEROGELS;
D O I
10.1016/j.ijbiomac.2024.132908
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ever-increasing demand for energy and environmental concerns have driven scientists to look for renewable and eco-friendly alternatives. Bio-based thermoelectric (TE) composite materials provide a promising solution to alleviate the global energy crisis due to their direct conversion of heat to electricity. Cellulose, the most abundant bio-polymer on earth with fascinating structure and desirable physicochemical properties, provides an excellent alternative matrix for TE materials. Here, recent studies on cellulose-based TE composites are comprehensively summarized. The fundamentals of TE materials, including TE effects, TE devices, and evaluation on conversion efficiency of TE materials are briefly introduced at the beginning. Then, the state-of-the-art methods for constructing cellulose-based TE composites in the forms of paper/film, aerogel, liquid, and hydrogel, are highlighted. TE performances of these composites are also compared. Following that, applications of cellulose-based TE composites in the fields of energy storage (e.g., supercapacitors) and sensing (e.g., self-powered sensors) are presented. Finally, opportunities and challenges that need investigation toward further development of cellulosebased TE composites are discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A review of recent advances in biomedical applications of smart cellulose-based hydrogels
    Liu, Haiyan
    Hu, Yang
    Liu, Yingyu
    Hu, Rong
    Wu, Xiuping
    Li, Bing
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [32] A review of cellulose-based substrates for SERS: fundamentals, design principles, applications
    Ogundare, Segun A.
    van Zyl, Werner E.
    CELLULOSE, 2019, 26 (11) : 6489 - 6528
  • [33] A review of cellulose-based substrates for SERS: fundamentals, design principles, applications
    Segun A. Ogundare
    Werner E. van Zyl
    Cellulose, 2019, 26 : 6489 - 6528
  • [34] Promising cellulose-based functional gels for advanced biomedical applications: A review
    Li, Xin
    Jiang, Geyuan
    Wang, Gang
    Zhou, Jianhong
    Zhang, Yuehong
    Zhao, Dawei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 260
  • [35] Recent progress in cellulose derivatives and cellulose-based composites for bioimaging and anticancer applications (2020-2024)
    Ashour, Amal Adnan
    Shafie, Alaa
    CELLULOSE, 2024, : 10063 - 10086
  • [36] PEDOT-based thermoelectric composites: Preparation, mechanism and applications
    Jia Fu
    Shilong Zhang
    Lirong Liang
    Chunyu Du
    Zhenqiang Ye
    Guangming Chen
    Chinese Chemical Letters, 2024, 35 (09) : 80 - 90
  • [37] Bacterial cellulose-based composites as vehicles for dermal and transdermal drug delivery: A review
    Mohammadi, Sajad
    Jabbari, Farzaneh
    Babaeipour, Valiollah
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242
  • [38] Unveiling the potential of bacterial cellulose-based composites in eye tissue engineering: a review
    Jabbari, Farzaneh
    Mohammadi, Sajad
    Babaeipour, Valiollah
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2024,
  • [39] PEDOT-based thermoelectric composites: Preparation, mechanism and applications
    Fu, Jia
    Zhang, Shilong
    Liang, Lirong
    Du, Chunyu
    Ye, Zhenqiang
    Chen, Guangming
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [40] Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro - a review
    Freire, Carmen S. R.
    Fernandes, Susana C. M.
    Silvestre, Armando J. D.
    Neto, Carlos Pascoal
    HOLZFORSCHUNG, 2013, 67 (06) : 603 - 612