Review and Outlook on Fracturing Technology and Mechanism of Hydrate-Bearing Sediments

被引:2
|
作者
Song, Yongchen [1 ]
Wang, Xinyi [1 ]
Dong, Zihan [2 ]
An, Baixin [3 ]
Xu, Haiwei [4 ]
Liu, Tao [1 ]
Wu, Peng [1 ]
Li, Yanghui [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Liaoning, Peoples R China
[2] China Petrochem Corp, Oil Dev Ctr, Shengli Oilfield Branch, Dongying 257000, Shandong, Peoples R China
[3] China Petrochem Corp, Petr Engn Technol Res Inst, Shengli Oilfield Branch, Dongying 257000, Shandong, Peoples R China
[4] China Natl Petr Corp, Baikouquan Oil Prod Plant, Xinjiang Oilfield Branch, Karamay 834000, Peoples R China
基金
中国国家自然科学基金;
关键词
NATURAL-GAS HYDRATE; SOUTH CHINA SEA; METHANE-HYDRATE; HYDRAULIC FRACTURE; HORIZONTAL WELLS; FRACABILITY EVALUATION; RESERVOIR; PROPAGATION; DEPRESSURIZATION; SHALE;
D O I
10.1021/acs.energyfuels.4c02524
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Natural gas hydrates (NGHs) are widely distributed in marine and permafrost regions with huge reserves, which are considered one of the important potential sources for future clean energy. At present, China, Japan, the United States, Canada, etc. have conducted several trials; however, they all face varying degrees of challenges, such as low gas production efficiency and discontinuous production periods. In the oil and gas industry, hydraulic fracturing is a mature and highly efficient method for enhancing production through pressurization. Therefore, the successful application of fracturing technology to the NGH reservior is an urgently needed solution and could be a potentially revolutionary technology. This study summarizes the main recent fracturing advances in the hydrate field; it outlines the existing fracturing equipment for the NGH reservoir that differs from traditional oil and gas reservoir development, discussing the more efficient numerical simulation methods from the unit cell, experimental scale, to field scale. Additionally, it investigates the main controlling factors of fracturing behavior, such as the effects of fracturing fluid (viscosity and injection rate) and sample conditions (saturation, stress anisotropy, matrix, and natural fractures). The relationships and mechanisms proposed herein can provide new insights for understanding the fracturing behavior during hydrate exploration and constructing safe fracturing and extraction technologies.
引用
收藏
页码:14960 / 14981
页数:22
相关论文
共 50 条
  • [21] Elastic properties of gas hydrate-bearing sediments
    Lee, MW
    Collett, TS
    GEOPHYSICS, 2001, 66 (03) : 763 - 771
  • [22] Elastic properties of gas hydrate-bearing sediments
    Lee, Myung W.
    Collett, Timothy S.
    Geophysics, 2013, 78 (03) : 763 - 771
  • [23] Model for the Elastic Modulus of Hydrate-Bearing Sediments
    Zhang, Xuhui
    Liu, Lele
    Zhou, Junbing
    Lu, Xiaobing
    Wang, Shuyun
    Liu, Changling
    Ye, Yuguang
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2015, 25 (04) : 314 - 319
  • [24] Review on the Test Methods and Devices for Mechanical Properties of Hydrate-Bearing Sediments
    Chen, Mingtao
    Li, Yanlong
    Merey, Sukru
    Wu, Nengyou
    Hu, Qiaobo
    Zhang, Yajuan
    Dong, Lin
    Yu, Guigang
    Jiang, Haiyang
    SUSTAINABILITY, 2022, 14 (10)
  • [25] Impact of hydrate saturation on water permeability in hydrate-bearing sediments
    Mahabadi, Nariman
    Dai, Sheng
    Seol, Yongkoo
    Jang, Jaewon
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 696 - 703
  • [26] Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt
    Liu, Zhichao
    Dai, Sheng
    Ning, Fulong
    Peng, Li
    Wei, Houzhen
    Wei, Changfu
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (02) : 715 - 723
  • [27] Effect of hydrate distribution on effective permeability of hydrate-bearing sediments
    He, Juan
    Li, Xiaosen
    Chen, Zhaoyang
    GAS SCIENCE AND ENGINEERING, 2023, 116
  • [28] Numerical simulation of elastic properties of hydrate-bearing sediments with digital rock technology
    Tian, Haitao
    Liu, Weihua
    Ding, Pinbo
    Wei, Wei
    Li, Xiaobin
    Cai, Jianchao
    MARINE AND PETROLEUM GEOLOGY, 2024, 160
  • [29] 2D Numerical Simulation of Hydraulic Fracturing in Hydrate-Bearing Sediments Based on the Cohesive Element
    Ma, Xiaolong
    Cheng, Jinhua
    Sun, Youhong
    Li, Shengli
    ENERGY & FUELS, 2021, 35 (05) : 3825 - 3840
  • [30] Recent Advances in Methods of Gas Recovery from Hydrate-Bearing Sediments: A Review
    Wang, Zhiyuan
    Zhang, Yangyang
    Peng, Zhenyu
    Shan, Zhengfeng
    Sun, Baojiang
    Sun, Jinsheng
    Energy and Fuels, 2022, 36 (11): : 5550 - 5593