Mild Lithium-Rich Manganese-Based Cathodes with the Optimal Activation of Li2MnO3 for Stable and High Capacity Lithium-Ion Batteries

被引:6
|
作者
Chen, Yong [1 ,2 ]
Li, Quan [1 ,2 ]
Chen, Zhuo [1 ,2 ]
Zeng, Weihao [1 ,2 ]
Liu, Zhaopei [1 ,2 ]
Wang, Meiyan [1 ,2 ]
Xia, Fanjie [1 ,2 ]
Wang, Guan [1 ,2 ]
Wu, Jinsong [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Nanostruct Res Ctr NRC, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
cobalt-free lithium-rich manganese-based layered oxides; microstructure modulation; mild-rich lithium strategy; oxygen stability; CYCLING STABILITY; RATE CAPABILITY;
D O I
10.1002/adfm.202411542
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The commercial application of lithium-rich layered oxides still has many obstacles since the oxygen in Li2MnO3 has an unstable coordination and tends to be released when Li-ion is extracted at the voltage higher than 4.5 V. In this work, a series of cobalt-free lithium-rich manganese-based oxide cathodes (Li1+xTM1-xO2, TM = Mn, Ni) are synthesized by gradually decreasing the Li/TM ratio. Among these cobalt-free Li-rich manganese-based oxides (LRMO), LR-1.2 (when Li/TM = 1.2) has an optimized dual-phase (namely Li2MnO3 and LiTMO2-like) structure, in which the coordination environment of part of oxygen is transformed from 4Li-O-2TM octahedra to 3Li-O-3TM octahedra due to the partial substitution of TM for Li at Li-2b site. Thus, some of the original unstable Li-O-Li configurations change to Li-O-TM configurations, forming strong TM-O covalent bonding and enhancing the structural stability of the oxygen. Consequently, the LR-1.2 achieved a high reversible capacity of 282.3 mAh g(-1) (Coulombic efficiency of 90.9%) at 0.1 C, exhibiting outstanding cycling stability (capacity retention of 90.3% after 400 cycles at 2 C) and superior rate performance. This work establishes a correlation between the microstructure modulation tuned by the Li/TM ratio and their electrochemical performance, offering insights into the design of cathode materials for high-performance lithium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Surface engineering for high stable lithium-rich manganese-based cathode materials
    Zhou, Miaomiao
    Zhao, Jianjun
    Wang, Xiaodong
    Shen, Ji
    Tang, Wenhao
    Deng, Yirui
    Liu, Ruiping
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [22] Electrochemically Inert Li2MnO3: The Key to Improving the Cycling Stability of Li-Rich Manganese Oxide Used in Lithium-Ion Batteries
    Wang, Lian-Bang
    Hu, He-Shan
    Lin, Wei
    Xu, Qing-Hong
    Gong, Jia-Dong
    Chai, Wen-Kui
    Shen, Chao-Qi
    MATERIALS, 2021, 14 (16)
  • [23] Surface engineering for high stable lithium-rich manganese-based cathode materials
    Miaomiao Zhou
    Jianjun Zhao
    Xiaodong Wang
    Ji Shen
    Wenhao Tang
    Yirui Deng
    Ruiping Liu
    ChineseChemicalLetters, 2023, 34 (06) : 618 - 623
  • [24] Highly stable TiO2 coated Li2MnO3 cathode materials for lithium-ion batteries
    Kim, Si-Jin
    Kim, Min-Cheol
    Kwak, Da-Hee
    Kim, Da-Mi
    Lee, Gyu-Ho
    Choe, Hui-Seon
    Park, Kyung-Won
    JOURNAL OF POWER SOURCES, 2016, 304 : 119 - 127
  • [25] Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application
    Lu, Zhiyuan
    Liu, Yanni
    Liao, Shijun
    PROGRESS IN CHEMISTRY, 2020, 32 (10) : 1504 - 1514
  • [26] Role of polyvinylpyrrolidone in the electrochemical performance of Li2MnO3 cathode for lithium-ion batteries
    Lee, Ji-Eun
    Kim, Min-Cheol
    Moon, Sang-Hyun
    Kim, Eun-Soo
    Shin, Yeon-Kyung
    Choi, Sojeong
    Kwon, Suk-Hui
    Kim, Si-Jin
    Kwon, Hye-Jin
    Park, Kyung-Won
    RSC ADVANCES, 2019, 9 (18) : 10297 - 10304
  • [27] The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries
    Yufang Chen
    Chunman Zheng
    Zhongxue Chen
    Kai Xie
    Ionics, 2017, 23 : 367 - 375
  • [28] Simple Water Treatment Strategy To Optimize the Li2MnO3 Activation of Lithium-Rich Cathode Materials
    Wang, Min-Jun
    Shao, Ai-Fen
    Yu, Fu-Da
    Sun, Gang
    Gu, Da-Ming
    Wang, Zhen-Bo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (15) : 12825 - 12837
  • [29] The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries
    Chen, Yufang
    Zheng, Chunman
    Chen, Zhongxue
    Xie, Kai
    IONICS, 2017, 23 (02) : 367 - 375
  • [30] Li2MnO3 based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries
    Ye, D. L.
    Wang, L. Z.
    MATERIALS TECHNOLOGY, 2014, 29 (A2) : A59 - A69