Dendritic tip selection during solidification of alloys: Insights from phase-field simulations

被引:0
|
作者
Zhang, Qingjie [1 ]
Xing, Hui [1 ,2 ]
Wang, Lingjie [1 ]
Zhai, Wei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Phys Sci & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
关键词
phase-field simulations; dendritic structure; interface energy anisotropy; tip shape selection parameter; GROWTH;
D O I
10.1088/1674-1056/ad57ac
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effect of undercooling Delta T and the interface energy anisotropy parameter epsilon(4 )on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys. It was found that the tip radius rho increases and the tip shape amplitude coefficient A(4) decreases with the increase of the fitting range for all cases. The dendrite tip shape selection parameter sigma* decreases and then stabilizes with the increase of the fitting range, and sigma* increases with the increase of epsilon(4). The relationship between sigma* and epsilon(4) follows a power-law function sigma(& lowast; )proportional to epsilon(alpha)(4) , and alpha is independent of Delta T but dependent on the fitting range. Numerical results demonstrate that the predicted sigma* is consistent with the curve of microscopic solvability theory (MST) for epsilon(4) < 0.02, and sigma* obtained from our phase-field simulations is sensitive to the undercooling when epsilon(4) is fixed.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Phase-field simulations of particle capture during the directional solidification of silicon
    Aufgebauer, Henning
    Kundin, Julia
    Emmerich, Heike
    Azizi, Maral
    Reimann, Christian
    Friedrich, Jochen
    Jauss, Thomas
    Sorgenfrei, Tina
    Croell, Arne
    [J]. JOURNAL OF CRYSTAL GROWTH, 2016, 446 : 12 - 26
  • [22] Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts
    Bragard, J
    Karma, A
    Lee, YH
    Plapp, M
    [J]. INTERFACE SCIENCE, 2002, 10 (2-3) : 121 - 136
  • [23] Phase-field model for solidification of ternary alloys
    Ode, M
    Lee, JS
    Kim, SG
    Kim, WT
    Suzuki, T
    [J]. ISIJ INTERNATIONAL, 2000, 40 (09) : 870 - 876
  • [24] Phase-field simulations of velocity selection in rapidly solidified binary alloys
    Fan, Jun
    Greenwood, Michael
    Haataja, Mikko
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2006, 74 (03):
  • [25] Phase-field simulation of tilted growth of dendritic arrays during directional solidification
    Xing, H.
    Dong, X. L.
    Chen, C. L.
    Wang, J. Y.
    Du, L. F.
    Jin, K. X.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 90 : 911 - 921
  • [26] Anomalous coarsening behaviour in Ni-Al alloys: Insights from phase-field simulations
    Chafle, Rupesh
    Mukherjee, Rajdip
    [J]. MATERIALS LETTERS, 2020, 279 (279)
  • [27] Phase-field simulations of spiral growth during directional ternary eutectic solidification
    Hoetzer, Johannes
    Steinmetz, Philipp
    Jainta, Marcus
    Schulz, Sebastian
    Kellner, Michael
    Nestler, Britta
    Genau, Amber
    Dennstedt, Anne
    Bauer, Martin
    Koestler, Harald
    Ruede, Ulrich
    [J]. ACTA MATERIALIA, 2016, 106 : 249 - 259
  • [28] Stochastic phase-field simulations of symmetric alloy solidification
    Benítez, R
    Ramírez-Piscina, L
    [J]. FLUCTUATION AND NOISE LETTERS, 2004, 4 (03): : L505 - L510
  • [29] Multicomponent alloy solidification: Phase-field modeling and simulations
    Nestler, B
    Garcke, H
    Stinner, B
    [J]. PHYSICAL REVIEW E, 2005, 71 (04):
  • [30] Columnar dendritic solidification of TiAl under diffusive and hypergravity conditions investigated by phase-field simulations
    Viardin, A.
    Zollinger, J.
    Sturz, L.
    Apel, M.
    Eiken, J.
    Berger, R.
    Hecht, U.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 172