Feature Fusion-Based Data Augmentation Method for Small Object Detection

被引:0
|
作者
Wang, Xin [1 ]
Zhang, Hongyan [1 ]
Liu, Qianhe [1 ]
Gong, Wei [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Elect & Control Engn, Shenyang 110168, Peoples R China
关键词
Feature extraction; Data augmentation; Accuracy; Printed circuits; Interpolation; Computational modeling; Transmission line matrix methods; Target recognition; Optical distortion; Matrix converters;
D O I
10.1109/MMUL.2024.3420961
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In addressing the insufficiencies of feature insertion, inaccurate positioning, and incompatible feature sizes in data augmentation algorithms based on deep learning for detecting microscopic defects on printed circuit boards (PCBs), this paper proposes a novel approach incorporating multiple strategies for small target alignment insertion. First, traditional linear feature extraction methods are transformed into a multiscale comprehensive analysis process. Subsequently, point-to-point matching calculations are converted into region-wise traversals to enhance accuracy and constrain the matching region. Next, geometric correspondences are determined through the computation of a transfer matrix, effectively eliminating perspective distortions. Finally, by constructing a top-down pyramid optical flow module, size limitations are overcome while enhancing features of small target defects. Experimental results demonstrate that this method significantly improves the recognition accuracy of the network model for small target defects on PCB surfaces.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 50 条
  • [21] A feature fusion-based communication jamming recognition method
    Xin, Mingrui
    Cai, Zhuoran
    WIRELESS NETWORKS, 2023, 29 (07) : 2993 - 3004
  • [22] A feature fusion-based communication jamming recognition method
    Mingrui Xin
    Zhuoran Cai
    Wireless Networks, 2023, 29 : 2993 - 3004
  • [23] Small object detection model based on feature fusion of attention mechanism
    Chen H.
    Zhen X.
    Zhao T.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (03): : 60 - 66
  • [24] Small Object Detection in Traffic Scenes Based on Attention Feature Fusion
    Lian, Jing
    Yin, Yuhang
    Li, Linhui
    Wang, Zhenghao
    Zhou, Yafu
    SENSORS, 2021, 21 (09)
  • [25] Research on Small Object Detection Based on Feature Fusion and Attention Mechanism
    Liu, Jianwei
    Liu, Zheng
    Lu, Jingwen
    Li, Chuancan
    Chen, Gangqiang
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 2285 - 2291
  • [26] A Data Fusion-Based Fire Detection System
    Ting, Ying-Yao
    Hsiao, Chi-Wei
    Wang, Huan-Sheng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04): : 977 - 984
  • [27] A Multi-Feature Fusion-Based Change Detection Method for Remote Sensing Images
    Liping Cai
    Wenzhong Shi
    Ming Hao
    Hua Zhang
    Lipeng Gao
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 2015 - 2022
  • [28] Multisensor fusion-based maritime ship object detection method for autonomous surface vehicles
    Zhang, Qi
    Shan, Yunxiao
    Zhang, Ziquan
    Lin, Hongquan
    Zhang, Yunfei
    Huang, Kai
    JOURNAL OF FIELD ROBOTICS, 2024, 41 (03) : 493 - 510
  • [29] A Multi-Feature Fusion-Based Change Detection Method for Remote Sensing Images
    Cai, Liping
    Shi, Wenzhong
    Hao, Ming
    Zhang, Hua
    Gao, Lipeng
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (12) : 2015 - 2022
  • [30] Object detection method based on global feature augmentation and adaptive regression in IoT
    Hui Li
    Yan Dong
    Lingwei Xu
    Shujun Zhang
    Junyin Wang
    Neural Computing and Applications, 2021, 33 : 4119 - 4131