Adaptive evolution of pancreatic ribonuclease gene (RNase1) in Cetartiodactyla

被引:0
|
作者
Lang, Datian [1 ]
Zhao, Junsong [1 ]
Liu, Songju [1 ]
Mu, Yuan [2 ]
Zou, Tiantian [3 ,4 ]
机构
[1] Zhaotong Univ, Dept Agron & Life Sci, 1 Guoxue Rd, Zhaotong 657000, Yunnan, Peoples R China
[2] Dali Univ, Inst Eastern Himalaya Biodivers Res, 2 Honsheng Rd, Dali 671003, Yunnan, Peoples R China
[3] Kunming Med Univ, Sch Forens Med, 1168 Rongxi Rd, Kunming 650500, Yunnan, Peoples R China
[4] Kunming Med Univ, NHC Key Lab Drug Addict Med, Kunming, Yunnan, Peoples R China
来源
INTEGRATIVE ZOOLOGY | 2024年
关键词
Cetartiodactyla; functional divergence; gene duplication; herbivorous lineages; RNase1; DETECTING POSITIVE SELECTION; FUNCTIONAL DIVERGENCE; MOLECULAR EVOLUTION; PROVIDES INSIGHTS; SIGNAL PEPTIDES; DIETARY SWITCH; A SUPERFAMILY; FAMILY; GENOME;
D O I
10.1111/1749-4877.12895
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Pancreatic ribonuclease (RNase1), a digestive enzyme produced by the pancreas, is associated with the functional adaptation of dietary habits and is regarded as an attractive model system for studies of molecular evolution. In this study, we identified 218 functional genes and 48 pseudogenes from 114 species that span all four Cetartiodactyla lineages: two herbivorous lineages (Ruminantia and Tylopoda) and two non-herbivorous lineages (Cetancodonta and Suoidea). Multiple RNase1 genes were detected in all species of the two herbivorous lineages, and phylogenetic and genomic location analyses demonstrated that independent gene duplication events occurred in Ruminantia and Tylopoda. In Ruminantia, the gene duplication events occurred in the ancestral branches of the lineage in the Middle Eocene, a time of increasing climatic seasonality during which Ruminantia rapidly radiated. In contrast, only a single RNase1 gene was observed in the species of the two non-herbivorous lineages (Cetancodonta and Suoidea), suggesting that the previous Cetacea-specific loss hypothesis should be rejected. Moreover, the duplicated genes of RNase1 in the two herbivorous lineages (Ruminantia and Tylopoda) may have undergone functional divergence. In combination with the temporal coincidence between gene replication and the enhanced climatic seasonality during the Middle Eocene, this functional divergence suggests that RNase1 gene duplication was beneficial for Ruminantia to use the limited quantities of sparse fibrous vegetation and adapt to seasonal changes in climate. In summary, the findings indicate a complex and intriguing evolutionary pattern of RNase1 in Cetartiodactyla and demonstrate the molecular mechanisms by which organisms adapt to the environment.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Rapid Evolution of the Ribonuclease A Superfamily: Adaptive Expansion of Independent Gene Clusters in Rats and Mice
    Neil A. Singhania
    Kimberly D. Dyer
    Jianzhi Zhang
    Madeleine S. Deming
    Cynthia A. Bonville
    Joseph B. Domachowske
    Helene F. Rosenberg
    Journal of Molecular Evolution, 1999, 49 : 721 - 728
  • [42] Rapid evolution of the ribonuclease A superfamily: Adaptive expansion of independent gene clusters in rats and mice
    Singhania, NA
    Dyer, KD
    Zhang, JZ
    Deming, MS
    Bonville, CA
    Domachowske, JB
    Rosenberg, HF
    JOURNAL OF MOLECULAR EVOLUTION, 1999, 49 (06) : 721 - 728
  • [43] RNase1 alleviates the Aeromonas hydrophila-induced oxidative stress in blunt snout bream
    Geng, Ruijing
    Jia, Yongyi
    Chi, Meili
    Wang, Zhigiang
    Liu, Han
    Wang, Weimin
    DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, 2019, 91 : 8 - 16
  • [44] PRIMARY STRUCTURE OF SEMINAL RIBONUCLEASE (RNASE BS-1)
    SUZUKI, H
    GRECO, L
    PARENTE, A
    FARINA, B
    LAMONTAG.R
    LEONE, E
    ACTA VITAMINOLOGICA ET ENZYMOLOGICA, 1972, 26 (5-6) : 213 - 214
  • [45] Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells
    Laakmann, Katrin
    Eckersberg, Jorina Mona
    Hapke, Moritz
    Wiegand, Marie
    Bierwagen, Jeff
    Beinborn, Isabell
    Preusser, Christian
    von Strandmann, Elke Pogge
    Heimerl, Thomas
    Schmeck, Bernd
    Jung, Anna Lena
    CELL COMMUNICATION AND SIGNALING, 2023, 21 (01)
  • [46] GENETIC-POLYMORPHISM OF HUMAN RIBONUCLEASE (RNASE-1)
    KISHI, K
    SATO, W
    YASUDA, T
    KAWAI, Y
    MIZUTA, K
    JAPANESE JOURNAL OF HUMAN GENETICS, 1988, 33 (02): : 250 - 250
  • [47] 胰核糖核酸酶基因(RNASE1)重复与功能分化
    王小燕
    李能枝
    于黎
    赵卉
    张亚平
    科学通报, 2009, 54 (23) : 3658 - 3663
  • [48] In vitro evolution of a dimeric variant of human pancreatic ribonuclease
    Russo, N
    Antignani, A
    D'Alessio, G
    BIOCHEMISTRY, 2000, 39 (13) : 3585 - 3591
  • [49] Extracellular RNA in cardiac ischemia/reperfusion injury: prevention of heart failure and cell damage by RNase1
    Cabrera-Fuentes, H. A.
    Ruiz-Meana, M.
    Kostin, S.
    Lecour, S.
    Hausenloy, D. J.
    Garcia-Dorado, D. J.
    Schluter, K. D.
    Preissner, K. T.
    CARDIOVASCULAR RESEARCH, 2014, 103
  • [50] Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells
    Laakmann, K.
    Eckersberg, J.
    Hapke, M.
    Burt, M.
    Bierwagen, J.
    Beinborn, I
    Preusser, C.
    von Strandmann, E. Pogge
    Heimerl, T.
    Schmeck, B.
    Jung, A.
    PNEUMOLOGIE, 2024, 78 : S33 - S33