Spatial relaxation transformer for image super-resolution

被引:1
|
作者
Li, Yinghua [1 ]
Zhang, Ying [1 ]
Zeng, Hao [3 ]
He, Jinglu [1 ]
Guo, Jie [2 ]
机构
[1] Xian Univ Posts & Telecommun, Xian Key Lab Image Proc Technol & Applicat Publ Se, Changan West St, Xian 710121, Shaanxi, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, 2 Southern Tai Bai Rd, Xian 710071, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
关键词
Super-resolution; Vision transformer; Feature aggregation; Image enhancement; Swin transformer;
D O I
10.1016/j.jksuci.2024.102150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transformer-based approaches have demonstrated remarkable performance in image processing tasks due to their ability to model long-range dependencies. Current mainstream Transformer-based methods typically confine self-attention computation within windows to reduce computational burden. However, this constraint may lead to grid artifacts in the reconstructed images due to insufficient cross-window information exchange, particularly in image super-resolution tasks. To address this issue, we propose the Multi-Scale Texture Complementation Block based on Spatial Relaxation Transformer (MSRT), which leverages features at multiple scales and augments information exchange through cross windows attention computation. In addition, we introduce a loss function based on the prior of texture smoothness transformation, which utilizes the continuity of textures between patches to constrain the generation of more coherent texture information in the reconstructed images. Specifically, we employ learnable compressive sensing technology to extract shallow features from images, preserving image features while reducing feature dimensions and improving computational efficiency. Extensive experiments conducted on multiple benchmark datasets demonstrate that our method outperforms previous state-of-the-art approaches in both qualitative and quantitative evaluations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] PCCFormer: Parallel coupled convolutional transformer for image super-resolution
    Hou, Bowen
    Li, Gongyan
    VISUAL COMPUTER, 2024, 40 (12): : 8591 - 8602
  • [32] Asymmetric convolution Swin transformer for medical image super-resolution
    Lu, Weijia
    Jiang, Jiehui
    Tian, Hao
    Gu, Jun
    Lu, Yuhong
    Yang, Wanli
    Gong, Ming
    Han, Tianyi
    Jiang, Xiaojuan
    Zhang, Tingting
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 85 : 177 - 184
  • [33] Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution
    Liu, Yaoting
    Hu, Jianwen
    Kang, Xudong
    Luo, Jing
    Fan, Shaosheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Image Super-Resolution Using a Simple Transformer Without Pretraining
    Liu, Huan
    Shao, Mingwen
    Wang, Chao
    Cao, Feilong
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1479 - 1497
  • [35] Edge-Aware Attention Transformer for Image Super-Resolution
    Wang, Haoqian
    Xing, Zhongyang
    Xu, Zhongjie
    Cheng, Xiangai
    Li, Teng
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2905 - 2909
  • [36] The Method of Industrial Internet Image Super-resolution Based on Transformer
    Liu, Lin
    Yu, Yingjie
    Wang, Juncheng
    Jin, Yi
    Zeng, Yuqiao
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 260 - 265
  • [37] A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution
    Fang, Jinsheng
    Lin, Hanjiang
    Chen, Xinyu
    Zeng, Kun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1102 - 1111
  • [38] A Transformer-Based Model for Super-Resolution of Anime Image
    Xu, Shizhuo
    Dutta, Vibekananda
    He, Xin
    Matsumaru, Takafumi
    SENSORS, 2022, 22 (21)
  • [39] Structured image super-resolution network based on improved Transformer
    Lv X.-D.
    Li J.
    Deng Z.-N.
    Feng H.
    Cui X.-T.
    Deng H.-X.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (05): : 865 - 874+910
  • [40] RISTRA: Recursive Image Super-Resolution Transformer With Relativistic Assessment
    Zhou, Xiaoqiang
    Huang, Huaibo
    Wang, Zilei
    He, Ran
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6475 - 6487