Efficient End-Edge-Cloud Task Offloading in 6G Networks Based on Multiagent Deep Reinforcement Learning

被引:2
|
作者
She, Hao [1 ,2 ]
Yan, Lixing [1 ,2 ]
Guo, Yongan [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Minist Educ, Coll Telecommun & Informat Engn, Engn Res Ctr Hlth Serv Syst Based Ubiquitous Wirel, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Edge Intelligence Res Inst, Nanjing 210003, Jiangsu, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
关键词
Task analysis; 6G mobile communication; Servers; Computational modeling; Cloud computing; Resource management; Delays; 6G; end-edge-cloud; multiagent deep reinforcement learning (MADRL); task offloading; RESOURCE-ALLOCATION; OPTIMIZATION; ARCHITECTURE; IOT;
D O I
10.1109/JIOT.2024.3372614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the progressive evolution of the sixth-generation (6G) network, an array of diverse application tasks is experiencing a steady surge, consequently intensifying the computational pressure. However, even with highly optimized task offloading approaches, ensuring overall service quality for rapidly expanding network applications remains challenging due to hardware resource limitations. This article proposes a deep reinforcement learning-based algorithm utilizing a multiagent approach in the end-edge-cloud architecture for 6G networks. The offloading issue can be reformulated to a decentralized partially observable Markov decision process, which transfers the NP-hard problem. We design an efficient algorithm based on multiagent deep deterministic policy gradient (MADDPG) to observe the states of user equipments (UEs), edge servers, and cloud servers, thereby reducing offloading delay and energy consumption. Numerical results demonstrate that our proposed algorithm demonstrates superior performance compared to conventional and state-of-the-art approaches.
引用
收藏
页码:20260 / 20270
页数:11
相关论文
共 50 条
  • [31] A Task Offloading and Resource Allocation Optimization Method in End-Edge-Cloud Orchestrated Computing
    Peng, Bo
    Peng, Shi Lin
    Li, Qiang
    Chen, Cheng
    Zhou, Yu Zhu
    Lei, Xiang
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT VI, 2024, 14492 : 299 - 310
  • [32] Multi-task end-edge offloading based on Lyapunov optimization and deep reinforcement learning
    Xu C.
    Tang Z.-X.
    Jin X.
    Xia C.-Q.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (07): : 2457 - 2464
  • [33] Edge Computing Task Offloading for Environmental Perception of Autonomous Vehicles in 6G Networks
    Lv, Pin
    Xu, Wenbiao
    Nie, Jiangtian
    Yuan, Yanli
    Cai, Chao
    Chen, Zhe
    Xu, Jia
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1228 - 1245
  • [34] Deep reinforcement learning empowered energy efficient task-offloading in cloud-radio access networks
    Kumar, Naveen
    Ahmad, Anwar
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2023, 29 (03) : 341 - 358
  • [35] Towards Efficient Task Offloading With Dependency Guarantees in Vehicular Edge Networks Through Distributed Deep Reinforcement Learning
    Liu, Haoqiang
    Huang, Wenzheng
    Kim, Dong In
    Sun, Sumei
    Zeng, Yonghong
    Feng, Shaohan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 13665 - 13681
  • [36] Deep Reinforcement Learning Based Energy-efficient Task Offloading for Secondary Mobile Edge Systems
    Zhang, Xiaojie
    Pal, Amitangshu
    Debroy, Saptarshi
    2020 IEEE 45TH LOCAL COMPUTER NETWORKS SYMPOSIUM ON EMERGING TOPICS IN NETWORKING (LCN SYMPOSIUM 2020), 2020, : 48 - 59
  • [37] Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
    Zhu, Dali
    Liu, Haitao
    Li, Ting
    Sun, Jiyan
    Liang, Jie
    Zhang, Hangsheng
    Geng, Liru
    Liu, Yudong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [38] Proactive Caching With Distributed Deep Reinforcement Learning in 6G Cloud-Edge Collaboration Computing
    Wu, Changmao
    Xu, Zhengwei
    He, Xiaoming
    Lou, Qi
    Xia, Yuanyuan
    Huang, Shuman
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (08) : 1387 - 1399
  • [39] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [40] DMRO: A Deep Meta Reinforcement Learning-Based Task Offloading Framework for Edge-Cloud Computing
    Qu, Guanjin
    Wu, Huaming
    Li, Ruidong
    Jiao, Pengfei
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (03): : 3448 - 3459