Material extrusion-based 3D printed capacitor optimization: Enhancing performance with ZnO and Cu-CNT reinforced ABS composites

被引:2
|
作者
Divakaran, Nidhin [1 ]
Alex, Y. [1 ]
Mohapatra, Agneyarka [1 ]
Mohanty, Smita [1 ]
机构
[1] Cent Inst Petrochem Engn & Technol CIPET, Sch Adv Res Petrochem, Lab Adv Res Polymer Mat LARPM, Bhubaneswar 751024, India
关键词
Material extrusion; 3D Printing; Capacitors; ABS; Nanofillers; MECHANICAL-PROPERTIES; CARBON NANOTUBES; NANOCOMPOSITES;
D O I
10.1016/j.apmt.2024.102363
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, there has been a growing interest in 3D printed electronics due to its potential to revolutionize the electronics industry. 3D printed electronics assists in creation of customized electronic devices that can be tailored to specific needs. Our current work focusses on developing material extrusion (MEX) 3D printed capacitors using Acrylonitrile Butadiene Styrene (ABS) as base polymer. This research aims to investigate the effect of incorporating nanofillers, specifically zinc oxide (ZnO) and copper-carbon nanotubes (Cu-CNT), on the overall properties of polymer composites. The composites were prepared by melt blending ABS with varying concentrations of itaconic acid modified (m-ZnO) and Cu-CNT, followed by 3D printing into capacitor structures. The goal is to enhance the electrical performance of these composites and enable their use in 3D printed capacitors. The studies derived the influence of m-ZnO in enhancing the capacitance and dielectric constant of ABS polymer, while the presence of Cu-CNT augmented the electrical conductivity of ABS by 9 orders of magnitude. These nanofillers also contributed in amplifying tensile strength of ABS polymer along with its thermal properties. Further, the paper describes the design of a 3D printed capacitor that uses ABS/m-ZnO as the dielectric layer and ABS/Cu-CNT as the conducting layer, thereby making it a suitable candidate for developing capacitors with higher capacitance, energy storage devices with improved energy density, and sensors with higher sensitivity.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Extrusion-based 3D printed biodegradable porous iron
    Putra, N. E.
    Leeflang, M. A.
    Minneboo, M.
    Taheri, P.
    Fratila-Apachitei, L. E.
    Mol, J. M. C.
    Zhou, J.
    Zadpoor, A. A.
    ACTA BIOMATERIALIA, 2021, 121 (121) : 741 - 756
  • [2] An investigation into the porosity of extrusion-based 3D printed concrete
    Kruger, Jacques
    du Plessis, Anton
    van Zijl, Gideon
    ADDITIVE MANUFACTURING, 2021, 37 (37)
  • [3] On the geometrical origin of the anisotropy in extrusion-based 3d printed structures
    Mesnil, Romain
    Poussard, Valentin
    Sab, Karam
    Caron, Jean-Francois
    ENGINEERING STRUCTURES, 2023, 275
  • [4] Mix design, optimization and performance evaluation of extrusion-based 3D printable concrete
    Ambily, P. S.
    Rajendran, Neeraja
    Kaliyavaradhan, Senthil Kumar
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2023, 177 (05) : 302 - 320
  • [5] Extrusion-Based 3D Printing Applications of PLA Composites: A Review
    Tumer, Eda Hazal
    Erbil, Husnu Yildirim
    COATINGS, 2021, 11 (04)
  • [6] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Liu, Chenkang
    Yue, Songlin
    Zhou, Cong
    Sun, Honglei
    Deng, Shuxin
    Gao, Fei
    Tan, Yizhong
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (30) : 16851 - 16864
  • [7] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Chenkang Liu
    Songlin Yue
    Cong Zhou
    Honglei Sun
    Shuxin Deng
    Fei Gao
    Yizhong Tan
    Journal of Materials Science, 2021, 56 : 16851 - 16864
  • [8] Thermally assisted extrusion-based 3D printing of continuous carbon fiber-reinforced SiC composites
    Li, Sai
    Zhang, Haitian
    Han, Yu
    Lu, Zhongliang
    Miao, Kai
    Wang, Ziyao
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 172
  • [9] Vision-Based Quality Assurance of Composites Printed by Extrusion-Based 3D-Printers
    Patel P.
    Elsayed A.
    Yang S.
    Manufacturing Letters, 2022, 33 : 612 - 621
  • [10] Vision-Based Quality Assurance of Composites Printed by Extrusion-Based 3D-Printers
    Patel, Purvatya
    Elsayed, Abdallah
    Yang, Sheng
    MANUFACTURING LETTERS, 2022, 33 : 612 - 621