An investigation into the porosity of extrusion-based 3D printed concrete

被引:156
|
作者
Kruger, Jacques [1 ]
du Plessis, Anton [2 ,3 ]
van Zijl, Gideon [1 ]
机构
[1] Stellenbosch Univ, Dept Civil Engn, Div Struct Engn & Civil Engn Informat, ZA-7602 Stellenbosch, South Africa
[2] Stellenbosch Univ, Res Grp 3DInnovat, ZA-7602 Stellenbosch, South Africa
[3] Nelson Mandela Univ, Dept Mech Engn, ZA-6001 Port Elizabeth, South Africa
关键词
3D printed concrete; Computed tomography; Porosity; MicroCT; Void characteristics; HARDENED PROPERTIES; STRENGTH; PERFORMANCE; TOMOGRAPHY;
D O I
10.1016/j.addma.2020.101740
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Concrete structures additively manufactured by extrusion-based 3D concrete printing are reportedly orthotropic in mechanical behavior and exhibit relative weakness in interfacial regions. Microstructure, including porosity content, 3D porosity distribution and pore morphology presents a physical basis for these phenomena. Here, a first and comprehensive microstructural investigation is reported, using X-ray computed tomography to visualize and quantify porosity, pore sizes, shapes and distributions in extrusion-based 3D printed concrete. 3D printed plastic molds are used to sample specimens from freshly 3D printed concrete filaments, for minimum disturbance. As reference, similar specimens of the exact same concrete mix, but cast without compaction, instead of being 3D printed are included in the study. A fixed dimeter of 20 mm, but varying height is used to include a single filament layer (10 mm), two layers (20 mm) and four layers (40 mm). Both typical horizontal interfaces in multi-layer elements, and vertical interfaces between multilaterally deposited filaments are studied. Whilst a single 3D printable concrete mix are considered, print variables of pass time (0-60 min with 15 min intervals) and print speed (80, 100 and 120 mm/s) are considered to investigate their potential alteration of the microstructure. Findings are significant, indicating tri-axial spheroid shaped air voids present in printed specimens, elongated and flat in the print direction, compared to mostly spherical voids in cast specimens. This prompts for more research to be conducted into the effect of stress concentrations at micro-cracks or voids in 3D printed concrete, which especially impacts mechanical behavior. Furthermore, it is found that vertical and horizontal interlayers comprise of similar porosity, and that it is inaccurate to qualify the homogeneity of typically fissile 3D printed concrete elements based solely on superficial cross-sectional photographic evidence from saw-cut samples.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Evaluating the effects of porosity on the mechanical properties of extrusion-based 3D printed concrete
    van den Heever, Marchant
    du Plessis, Anton
    Kruger, Jacques
    van Zijl, Gideon
    CEMENT AND CONCRETE RESEARCH, 2022, 153
  • [2] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Liu, Chenkang
    Yue, Songlin
    Zhou, Cong
    Sun, Honglei
    Deng, Shuxin
    Gao, Fei
    Tan, Yizhong
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (30) : 16851 - 16864
  • [3] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Chenkang Liu
    Songlin Yue
    Cong Zhou
    Honglei Sun
    Shuxin Deng
    Fei Gao
    Yizhong Tan
    Journal of Materials Science, 2021, 56 : 16851 - 16864
  • [4] BASIC FRESH-STATE PROPERTIES OF EXTRUSION-BASED 3D PRINTED CONCRETE
    Bukvic, Olivera
    Radonjanin, Vlastimir
    Malesev, Mirjana
    Laban, Mirjana
    GRADEVNSKI MATERIJIALI I KONSTRUKCIJE-BUILDING MATERIALS AND STRUCTURES, 2020, 63 (04): : 99 - 117
  • [5] Extrusion-based 3D printed biodegradable porous iron
    Putra, N. E.
    Leeflang, M. A.
    Minneboo, M.
    Taheri, P.
    Fratila-Apachitei, L. E.
    Mol, J. M. C.
    Zhou, J.
    Zadpoor, A. A.
    ACTA BIOMATERIALIA, 2021, 121 (121) : 741 - 756
  • [6] On the geometrical origin of the anisotropy in extrusion-based 3d printed structures
    Mesnil, Romain
    Poussard, Valentin
    Sab, Karam
    Caron, Jean-Francois
    ENGINEERING STRUCTURES, 2023, 275
  • [7] Microstructure and mechanical properties of interlayer regions in extrusion-based 3D printed concrete: A critical review
    Ding, Tao
    Xiao, Jianzhuang
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2023, 141
  • [8] Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3D printed foods
    Zheng, Zhiliang
    Zhang, Min
    Liu, Zhenbin
    JOURNAL OF FOOD ENGINEERING, 2021, 306
  • [9] Mechanical characterisation for numerical simulation of extrusion-based 3D concrete printing
    van den Heever, Marchant
    Bester, Frederick
    Kruger, Jacques
    van Zijl, Gideon
    JOURNAL OF BUILDING ENGINEERING, 2021, 44
  • [10] Numerical assessment of plastic yielding in extrusion-based 3D concrete printing
    Tao, Yaxin
    Zhou, Jiangang
    Cui, Weijiu
    Shi, Xinyu
    De Schutter, Geert
    Van Tittelboom, Kim
    MATERIALS AND STRUCTURES, 2024, 57 (04)