Recommendations for using artificial intelligence in clinical flow cytometry

被引:5
|
作者
Ng, David P. [1 ]
Simonson, Paul D. [2 ]
Tarnok, Attila [3 ]
Lucas, Fabienne [4 ]
Kern, Wolfgang [5 ]
Rolf, Nina [6 ]
Bogdanoski, Goce [7 ]
Green, Cherie [8 ]
Brinkman, Ryan R. [9 ]
Czechowska, Kamila [10 ]
机构
[1] Univ Utah, Dept Pathol, Salt Lake City, UT USA
[2] Weill Cornell Med, Dept Pathol & Lab Med, New York, NY USA
[3] Fraunhofer Inst Cell Therapy & Immunol, Dept Preclin Dev & Validat, IZI, Leipzig, Germany
[4] Univ Washington, Dept Lab Med & Pathol, Seattle, WA USA
[5] MLL Munich Leukemia Lab GmbH, Munich, Germany
[6] Univ British Columbia, BC Childrens Hosp Res Inst, Vancouver, BC, Canada
[7] Bristol Myers Squibb, Clin Dev & Operat Qual, R&D Qual, Princeton, NJ USA
[8] Ozette Technol, Translat Sci, Seattle, WA USA
[9] Dotmatics Inc, Boston, MA USA
[10] Metafora Biosyst, Paris, France
关键词
artificial intelligence; clinical laboratory; development; flow cytometry; implementation; machine learning; multidisciplinary; performance; regulations; stakeholders; validation; SURGICAL PATHOLOGY; AMERICAN SOCIETY; 2ND OPINIONS; LEUKEMIA;
D O I
10.1002/cyto.b.22166
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Flow cytometry is a key clinical tool in the diagnosis of many hematologic malignancies and traditionally requires close inspection of digital data by hematopathologists with expert domain knowledge. Advances in artificial intelligence (AI) are transferable to flow cytometry and have the potential to improve efficiency and prioritization of cases, reduce errors, and highlight fundamental, previously unrecognized associations with underlying biological processes. As a multidisciplinary group of stakeholders, we review a range of critical considerations for appropriately applying AI to clinical flow cytometry, including use case identification, low and high risk use cases, validation, revalidation, computational considerations, and the present regulatory frameworks surrounding AI in clinical medicine. In particular, we provide practical guidance for the development, implementation, and suggestions for potential regulation of AI-based methods in the clinical flow cytometry laboratory. We expect these recommendations to be a helpful initial framework of reference, which will also require additional updates as the field matures.
引用
收藏
页码:228 / 238
页数:11
相关论文
共 50 条
  • [21] Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry
    Clichet, Valentin
    Harrivel, Veronique
    Delette, Caroline
    Guiheneuf, Eric
    Gautier, Murielle
    Morel, Pierre
    Assouan, Deborah
    Merlusca, Lavinia
    Beaumont, Marie
    Lebon, Delphine
    Caulier, Alexis
    Marolleau, Jean-Pierre
    Matthes, Thomas
    Vergez, Francois
    Garcon, Loic
    Boyer, Thomas
    BRITISH JOURNAL OF HAEMATOLOGY, 2022, 196 (05) : 1175 - 1183
  • [22] Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells
    Ramkumar Subramanian
    Rui Tang
    Zunming Zhang
    Vaidehi Joshi
    Jeffrey N. Miner
    Yu-Hwa Lo
    Scientific Reports, 12
  • [23] Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells
    Subramanian, Ramkumar
    Tang, Rui
    Zhang, Zunming
    Joshi, Vaidehi
    Miner, Jeffrey N.
    Lo, Yu-Hwa
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] Advanced Characterization of Silicone Oil Droplets in Protein Therapeutics Using Artificial Intelligence Analysis of Imaging Flow Cytometry Data
    Probst, Christine
    Zayats, Artiom
    Venkatachalam, Vidya
    Davidson, Bryan
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 109 (10) : 2996 - 3005
  • [25] Challenges and perspectives in use of artificial intelligence to support treatment recommendations in clinical oncology
    Duwe, Gregor
    Mercier, Dominique
    Wiesmann, Crispin
    Kauth, Verena
    Moench, Kerstin
    Junker, Markus
    Neumann, Christopher C. M.
    Haferkamp, Axel
    Dengel, Andreas
    Hoefner, Thomas
    CANCER MEDICINE, 2024, 13 (12):
  • [26] Artificial intelligence-based classification of peripheral blood nucleated cells using label-free imaging flow cytometry
    Hirotsu, Amane
    Kikuchi, Hirotoshi
    Yamada, Hidenao
    Ozaki, Yusuke
    Haneda, Ryoma
    Kawata, Sanshiro
    Murakami, Tomohiro
    Matsumoto, Tomohiro
    Hiramatsu, Yoshihiro
    Kamiya, Kinji
    Yamashita, Daisuke
    Fujimori, Yuki
    Ueda, Yukio
    Okazaki, Shigetoshi
    Kitagawa, Masatoshi
    Konno, Hiroyuki
    Takeuchi, Hiroya
    LAB ON A CHIP, 2022, 22 (18) : 3464 - 3474
  • [27] Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence
    Tveit, Jesper
    Aurlien, Harald
    Plis, Sergey
    Calhoun, Vince D.
    Tatum, William O.
    Schomer, Donald L.
    Arntsen, Vibeke
    Cox, Fieke
    Fahoum, Firas
    Gallentine, William B.
    Gardella, Elena
    Hahn, Cecil D.
    Husain, Aatif M.
    Kessler, Sudha
    Kural, Mustafa Aykut
    Nascimento, Fabio A.
    Tankisi, Hatice
    Ulvin, Line B.
    Wennberg, Richard
    Beniczky, Sandor
    JAMA NEUROLOGY, 2023, 80 (08) : 805 - 812
  • [28] The effect of gender stereotypes on artificial intelligence recommendations
    Ahn, Jungyong
    Kim, Jungwon
    Sung, Yongjun
    JOURNAL OF BUSINESS RESEARCH, 2022, 141 : 50 - 59
  • [29] Updating recommendations of the Brazilian Group of Flow Cytometry (GBCFLUX) for diagnosis of acute leukemias using four-color flow cytometry panels
    Beltrame, Miriam P.
    Souto, Elizabeth Xisto
    Yamamoto, Mihoko
    Furtado, Felipe M.
    da Costa, Elaine Sobral
    Sandes, Alex Freire
    Pimenta, Glicinia
    Cavalcanti Junior, Geraldo Barroso
    Santos-Silva, Maria Claudia
    Lorand-Metze, Irene
    Ikoma-Colturato, Maura R., V
    HEMATOLOGY TRANSFUSION AND CELL THERAPY, 2021, 43 (04) : 499 - 506
  • [30] Data Science and Artificial Intelligence for Responsible Recommendations
    Wang, Shoujin
    Liu, Ninghao
    Zhang, Xiuzhen
    Wang, Yan
    Ricci, Francesco
    Mobasher, Bamshad
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4904 - 4905