A comprehensive investigation on one-pot synthesis of imidazole derivatives: quantum computational analysis, molecular docking, molecular dynamics simulations and antiviral activity against SARS-CoV-2

被引:0
|
作者
Lorin, Solo [1 ]
Rajaraman, D. [2 ]
Sonadevi, S. [2 ]
Solo, Peter [3 ]
Nagaraj, K. [4 ]
Raja, K. [1 ]
机构
[1] St Joseph Univ, Dept Chem, Dimapur 797115, Nagaland, India
[2] St Peters Engn Coll Autonomous, Dept Chem, Hyderabad, India
[3] St Josephs Coll Jakhama Autonomous, Dept Chem, Dimapur, India
[4] Natl Forens Sci Univ, Sch Pharm, Gandhinagar, India
关键词
Imidazole; molecular docking; molecular dynamic simulations; ADMET; DFT; HOMO-LUMO ANALYSIS; IN-VITRO; SPECTROSCOPIC INVESTIGATIONS; 4-SUBSTITUTED IMIDAZOLE; BIOLOGICAL EVALUATION; CORROSION INHIBITION; CARBON-STEEL; DFT; PREDICTION; DISCOVERY;
D O I
10.1080/00268976.2024.2390592
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New derivatives of 4-(2-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4,5-diphenyl-1H-imidazol-1-yl)ethyl)morpholine (DDIM) have been successfully synthesised and characterised using spectral methods such as FT-IR, H-1 NMR, and C-13 NMR. Density functional theory (DFT) with the B3LYP/6-311G (d, p) level of theory was used to determine optimised bond parameters and single crystal XRD investigations confirmed the structure of DDIM. The results of single crystal XRD measurements aligned well with the optimised geometrical parameters from DFT calculations. Frontier molecular orbital computations provided insights into the molecule's stability, chemical reactivity and charge transfer. Atomic charges were determined using mulliken population analysis. The molecular electrostatic potential (MEP) mapped to electron density surfaces identified potential reactive sites. This molecule shows promise as a potential NLO material due to its high mu beta(0) value. Binding affinities were determined via molecular docking against the COVID-19 major protease (Mpro: 6WCF/6Y84/6LU7). A 100 ns molecular dynamics simulation under in silico physiological conditions confirmed the stability of the complex structure formed with the COVID-19 protein, revealing a stable conformation and binding pattern in an imidazole derivative environment. Additionally, in-silico analysis predicted favourable to moderate anti-viral activity and anticipated the compound's absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Analysis of the mechanism of alliin and allicin against SARS-CoV-2S/ACE2 and SARS-CoV-2 Mpro based on molecular docking and molecular dynamics
    Li, Tianjiao
    Cheng, Bijun
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 1325 - 1331
  • [32] A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets
    Jamiu, Abdullahi Temitope
    Pohl, Carolina H.
    Bello, Sharafa
    Adedoja, Toluwase
    Sabiu, Saheed
    ALL LIFE, 2021, 14 (01) : 1100 - 1128
  • [33] Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor
    Garg S.
    Anand A.
    Lamba Y.
    Roy A.
    Vegetos, 2020, 33 (4): : 766 - 781
  • [34] Investigation of Furin inhibition to block SARS-CoV-2 spike protein cleavage and Structural stability via molecular docking and molecular dynamics simulations
    Ramakrishnan, Jaganathan
    Chinnamadhu, Archana
    Poomani, Kumaradhas
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C702 - C702
  • [35] Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations
    Vijay Kumar Vishvakarma
    Madhur Babu Singh
    Pallavi Jain
    Kamlesh Kumari
    Prashant Singh
    Amino Acids, 2022, 54 : 205 - 213
  • [36] Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations
    Masand, Vijay H.
    Sk, Md Fulbabu
    Kar, Parimal
    Rastija, Vesna
    Zaki, Magdi E. A.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 217
  • [37] Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations
    Vishvakarma, Vijay Kumar
    Singh, Madhur Babu
    Jain, Pallavi
    Kumari, Kamlesh
    Singh, Prashant
    AMINO ACIDS, 2022, 54 (02) : 205 - 213
  • [38] Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations
    Lazniewski, Michal
    Dermawan, Doni
    Hidayat, Syahrul
    Muchtaridi, Muchtaridi
    Dawson, Wayne K.
    Plewczynski, Dariusz
    METHODS, 2022, 203 : 498 - 510
  • [39] Molecular docking and dynamic simulations of Cefixime, Etoposide and Nebrodenside A against the pathogenic proteins of SARS-CoV-2
    Rashid, Haroon Ur
    Ahmad, Nasir
    Abdalla, Mohnad
    Khan, Khalid
    Martines, Marco Antonio Utrera
    Shabana, Samah
    JOURNAL OF MOLECULAR STRUCTURE, 2022, 1247
  • [40] Molecular docking and dynamic simulations of Cefixime, Etoposide and Nebrodenside A against the pathogenic proteins of SARS-CoV-2
    Rashid, Haroon ur
    Ahmad, Nasir
    Abdalla, Mohnad
    Khan, Khalid
    Martines, Marco Antonio Utrera
    Shabana, Samah
    Journal of Molecular Structure, 2021, 1247