On the existence, uniqueness and regularity of strong solutions to a stochastic 2D Cahn-Hilliard-Magnetohydrodynamic model

被引:0
|
作者
Tadmon, Calvin [1 ,2 ,3 ]
Deugoue, Gabriel [2 ]
Kougang, Salvador Awo [2 ]
机构
[1] Univ Dschang, Fac Sci, Res Unit Math & Applicat, Committed Math Team, POB 67, Dschang, Cameroon
[2] Univ Dschang, Fac Sci, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[3] Inst Math Univ Mainz, Staudingersweg 9, D-55128 Mainz, Germany
关键词
Stochastic; magnetohydrodynamics; Cahn-Hilliard-Navier-Stokes; strong solution; Galerkin approximation; Martingale; NAVIER-STOKES SYSTEM; FINITE-ELEMENT APPROXIMATION; DIFFUSE INTERFACE MODEL; HEAT-TRANSFER; 2-PHASE FLOW; PULLBACK ATTRACTORS; EQUATIONS DRIVEN; STATIONARY; FLUID; SPDE;
D O I
10.1515/jaa-2023-0145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a stochastic coupled model of the Cahn-Hilliard equations and the stochastic magnetohydrodynamic equations in a bounded domain of R-2. The model describes the flow of the mixture of two incompressible and immiscible fluids under the influence of an electromagnetic field with stochastic perturbations. We prove the existence, uniqueness and regularity of a probabilistic strong solution. The proof of the existence is based on the Galerkin approximation, the stopping time technique and some weak convergence principles in functional analysis.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Invariant measure for 2D stochastic Cahn-Hilliard-Navier-Stokes equations
    Qiu, Zhaoyang
    Wang, Huaqiao
    Huang, Daiwen
    STOCHASTICS AND DYNAMICS, 2023, 23 (03)
  • [22] On existence, uniqueness and stability of solutions to Cahn-Hilliard/Allen-Cahn systems with cross-kinetic coupling
    Brunk, A.
    Egger, H.
    Oyedeji, T. D.
    Yang, Y.
    Xu, B. -X.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
  • [23] On the weak solutions to a 3D stochastic Cahn-Hilliard-Navier-Stokes model
    Medjo, Theodore Tachim
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [24] Uniform H2-regularity of solution for the 2D Navier-Stokes/Cahn-Hilliard phase field model
    He, Yinnian
    Feng, Xinlong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 815 - 829
  • [25] A note on existence and uniqueness of solutions for a 2D bioheat problem
    Bedin, Luciano
    Viloche Bazan, Fermin S.
    APPLICABLE ANALYSIS, 2017, 96 (04) : 590 - 605
  • [26] Large deviation principle for the 2D stochastic Cahn-Hilliard-Navier-Stokes equations
    Qiu, Zhaoyang
    Wang, Huaqiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [27] Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media
    Han, Daozhi
    He, Xiaoming
    Wang, Quan
    Wu, Yanyun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [28] Existence and Uniqueness for Stochastic 2D Euler Flows with Bounded Vorticity
    Zdzisław Brzeźniak
    Franco Flandoli
    Mario Maurelli
    Archive for Rational Mechanics and Analysis, 2016, 221 : 107 - 142
  • [29] Existence and Uniqueness for Stochastic 2D Euler Flows with Bounded Vorticity
    Brzezniak, Zdzislaw
    Flandoli, Franco
    Maurelli, Mario
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (01) : 107 - 142
  • [30] Homogenization of 2D Cahn–Hilliard–Navier–Stokes system
    R. Bunoiu
    G. Cardone
    R. Kengne
    J. L. Woukeng
    Journal of Elliptic and Parabolic Equations, 2020, 6 : 377 - 408