Hybrid Multiscale SAR Ship Detector With CNN-Transformer and Adaptive Fusion Loss

被引:0
|
作者
Wang, Fei [1 ]
Chen, Chengcheng [1 ]
Zeng, Weiming [1 ]
机构
[1] Shanghai Maritime Univ, Digital Imaging & Intelligent Comp Lab, Shanghai 201306, Peoples R China
关键词
Marine vehicles; Feature extraction; Detectors; Convolution; Transformers; Computational modeling; Synthetic aperture radar; Deep learning; multiscale feature fusion; ship detection; synthetic aperture radar (SAR);
D O I
10.1109/LGRS.2024.3450716
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ship detection in remote sensing imagery is crucial for various maritime applications such as surveillance and navigation. Convolutional neural networks (CNNs) and transformers have shown significant potential in object detection within the field of image processing. However, existing models applied directly to ship detection in synthetic aperture radar (SAR) imagery encounter challenges due to the varying sizes of ship targets. This often leads to issues such as low detection accuracy, missed detections, and false alarms. In this letter, we propose a new detection network, HMA-Net, to further address these issues. Initially, we introduce the Cwin module, which enhances interference resistance at a relatively low cost, enabling the model to more accurately capture target information. Subsequently, we design a multiscale ship feature extraction module, which uses a parallel multibranch structure to extract features of ships of various sizes and shapes. Finally, we introduce an adaptive fusion loss function that flexibly allocates loss calculation methods to detected targets, thereby enhancing the robustness of the model and achieving high-quality detection boxes. The proposed HMA-Net achieved improvements of 2.0% and 0.9% in mAP(.50:.95) over the baseline models on the SAR Ship Detection dataset and the High-Resolution SAR Images dataset, using only 3.52 M parameters.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] EEG classification algorithm of motor imagery based on CNN-Transformer fusion network
    Liu, Haofeng
    Liu, Yuefeng
    Wang, Yue
    Liu, Bo
    Bao, Xiang
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 1302 - 1309
  • [42] ConvTransNet: A CNN-Transformer Network for Change Detection With Multiscale Global-Local Representations
    Li, Weiming
    Xue, Lihui
    Wang, Xueqian
    Li, Gang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [43] Multi-Object Tracking Algorithm Based on CNN-Transformer Feature Fusion
    Zhang, Yingjun
    Bai, Xiaohui
    Xie, Binhong
    Computer Engineering and Applications, 2024, 60 (02) : 180 - 190
  • [44] CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification
    Liao, Lingxiang
    Lu, Jingqing
    Wang, Lutao
    Zhang, Yongqing
    Gao, Dongrui
    Wang, Manqing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (10) : 3233 - 3247
  • [45] CNN-TransNet: A Hybrid CNN-Transformer Network With Differential Feature Enhancement for Cloud Detection
    Ma, Nan
    Sun, Lin
    He, Yawen
    Zhou, Chenghu
    Dong, Chuanxiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [46] A semi-parallel CNN-transformer fusion network for semantic change detection
    Zou, Changzhong
    Wang, Ziyuan
    IMAGE AND VISION COMPUTING, 2024, 149
  • [47] A CNN-transformer hybrid approach for an intrusion detection system in advanced metering infrastructure
    Ruizhe Yao
    Ning Wang
    Peng Chen
    Di Ma
    Xianjun Sheng
    Multimedia Tools and Applications, 2023, 82 : 19463 - 19486
  • [48] A CNN-Transformer Hybrid Approach for Crop Classification Using Multitemporal Multisensor Images
    Li, Zhengtao
    Chen, Guokun
    Zhang, Tianxu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 847 - 858
  • [49] An efficient CNN-transformer hybrid approach for water turbine unit failure prediction
    Zhang, Kefeng
    He, Ming
    Guo, Junxin
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (02) : 823 - 834
  • [50] MFH-Net: A Hybrid CNN-Transformer Network Based Multi-Scale Fusion for Medical Image Segmentation
    Wang, Ying
    Zhang, Meng
    Liang, Jian'an
    Liang, Meiyan
    International Journal of Imaging Systems and Technology, 2024, 34 (06)