Dataset Anonyization on Cloud: Open Problems and Perspectives

被引:0
|
作者
Cristani, Matteo [1 ]
Tomazzoli, Claudio [1 ]
机构
[1] Univ Verona, Dept Comp Sci, Verona, Italy
来源
CURRENT TRENDS IN WEB ENGINEERING, ICWE 2019 INTERNATIONAL WORKSHOPS | 2020年 / 11609卷
关键词
DATA PROVENANCE; RULES;
D O I
10.1007/978-3-030-51253-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data anonymization is the process of making information contained in a group of data such that it is not possible to identify unique references to single elements in the group after the process. This action, when conducted onto datasets used to make statistical inference is bound to have ananlogous behaviours on certain indices before and after the process itself. In this paper we study the pipeline of anonymization process for datasets, when this pipeline is managed on cloud technology, where cryptography is not applicable at all, for datasets being available in an open setting. We examine the open problems, and devise a method to address these problems in a logical framework.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [31] The Strong Convergence of Subgradients of Convex Functions Along Directions: Perspectives and Open Problems
    Dariusz Zagrodny
    Journal of Optimization Theory and Applications, 2018, 178 : 660 - 671
  • [32] The Strong Convergence of Subgradients of Convex Functions Along Directions: Perspectives and Open Problems
    Zagrodny, Dariusz
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (02) : 660 - 671
  • [33] GoCJ: Google Cloud Jobs Dataset for Distributed and Cloud Computing Infrastructures
    Hussain, Altaf
    Aleem, Muhammad
    DATA, 2018, 3 (04):
  • [34] Open Cloud Computing Interface: Open Community Leading Cloud Standards
    Edmonds, Andy
    Metsch, Thijs
    Papaspyrou, Alexander
    Richardson, Alexis
    ERCIM NEWS, 2010, (83): : 23 - 24
  • [35] A dataset for predicting cloud cover over Europe
    Hanna Svennevik
    Steven A. Hicks
    Michael A. Riegler
    Trude Storelvmo
    Hugo L. Hammer
    Scientific Data, 11
  • [36] A dataset for predicting cloud cover over Europe
    Svennevik, Hanna
    Hicks, Steven A.
    Riegler, Michael A.
    Storelvmo, Trude
    Hammer, Hugo L.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [37] MiliPoint: A Point Cloud Dataset for mmWave Radar
    Cui, Han
    Zhong, Shu
    Wu, Jiacheng
    Shen, Zichao
    Dahnoun, Naim
    Zhao, Yiren
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [38] OpenSiteRec: An Open Dataset for Site Recommendation
    Li, Xinhang
    Zhao, Xiangyu
    Wang, Yejing
    Liu, Yu
    Chen, Chong
    Long, Cheng
    Zhang, Yong
    Xing, Chunxiao
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1483 - 1493
  • [39] On the Analysis of a Cloud Seeding Dataset over Tasmania
    Morrison, Anthony E.
    Siems, Steven T.
    Manton, Michael J.
    Nazarov, Alex
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2009, 48 (06) : 1267 - 1280
  • [40] Building an Open Cloud
    Nelson, Michael R.
    SCIENCE, 2009, 324 (5935) : 1656 - 1657