Multi-Augmentation Contrastive Learning as Multi-Objective Optimization for Graph Neural Networks

被引:0
|
作者
Li, Xu [1 ]
Chen, Yongsheng [1 ]
机构
[1] Tongji Univ, Shanghai, Peoples R China
关键词
graph neural networks; multi-objective Learning; self-supervised learning;
D O I
10.1007/978-3-031-33377-4_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently self-supervised learning is gaining popularity for Graph Neural Networks (GNN) by leveraging unlabeled data. Augmentation plays a key role in self-supervision. While there is a common set of image augmentation methods that preserve image labels in general, graph augmentation methods do not guarantee consistent graph semantics and are usually domain dependent. Existing self-supervised GNN models often handpick a small set of augmentation techniques that limit the performance of the model. In this paper, we propose a common set of graph augmentation methods to a wide range of GNN tasks, and rely on the Pareto optimality to select and balance among these possibly conflicting augmented versions, called Pareto Graph Contrastive Learning (PGCL) framework. We show that while random selection of the same set of augmentation leads to slow convergence or even divergence, PGCL converges much faster with lower error rate. Extensive experiments on multiple datasets of different domains and scales demonstrate superior or comparable performance of PGCL.
引用
收藏
页码:495 / 507
页数:13
相关论文
共 50 条
  • [41] Evolving ARTMAP Neural Networks Using Multi-Objective Particle Swarm Optimization
    Granger, Eric
    Prieur, Donavan
    Connolly, Jean-Francois
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [42] DeepMaker: A multi-objective optimization framework for deep neural networks in embedded systems
    Loni, Mohammad
    Sinaei, Sima
    Zoljodi, Ali
    Daneshtalab, Masoud
    Sjodin, Mikael
    MICROPROCESSORS AND MICROSYSTEMS, 2020, 73 (73)
  • [43] Application of Multi-Objective optimization algorithm and Artificial Neural Networks at machining process
    Jafarian, Farshid
    Amirabadi, Hossein
    Sadri, Javad
    2013 FIRST IRANIAN CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (PRIA), 2013,
  • [44] Graph Contrastive Learning for Clustering of Multi-Layer Networks
    Yang, Yifei
    Ma, Xiaoke
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (04) : 429 - 441
  • [45] Multi-objective evolution strategy for multimodal multi-objective optimization
    Zhang, Kai
    Chen, Minshi
    Xu, Xin
    Yen, Gary G.
    APPLIED SOFT COMPUTING, 2021, 101
  • [46] Multi-objective pruning of dense neural networks using deep reinforcement learning
    Hirsch, Lior
    Katz, Gilad
    INFORMATION SCIENCES, 2022, 610 : 381 - 400
  • [47] Convergence analysis of sliding mode trajectories in multi-objective neural networks learning
    Costa, Marcelo Azevedo
    Braga, Antonio Padua
    de Menezes, Benjamin Rodrigues
    NEURAL NETWORKS, 2012, 33 : 21 - 31
  • [48] Multi-view and multi-augmentation for self-supervised visual representation learning
    Tran, Van Nhiem
    Huang, Chi-En
    Liu, Shen-Hsuan
    Aslam, Muhammad Saqlain
    Yang, Kai-Lin
    Li, Yung-Hui
    Wang, Jia-Ching
    APPLIED INTELLIGENCE, 2024, 54 (01) : 629 - 656
  • [49] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [50] Multi-view and multi-augmentation for self-supervised visual representation learning
    Van Nhiem Tran
    Chi-En Huang
    Shen-Hsuan Liu
    Muhammad Saqlain Aslam
    Kai-Lin Yang
    Yung-Hui Li
    Jia-Ching Wang
    Applied Intelligence, 2024, 54 : 629 - 656