Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer

被引:0
|
作者
Zhou, Kaile [1 ,2 ,3 ]
Zhang, Zhiyue [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Anhui Prov Key Lab Philosophy & Social Sci Smart M, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Remaining useful life; Capacity regeneration; Mode decomposition; Improved transformer; MODE DECOMPOSITION;
D O I
10.1016/j.est.2024.113749
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is essential in improving the safety and availability of energy storage systems. However, the capacity regeneration phenomenon of LIBs occurs during actual usage, seriously affecting the accuracy of LIBs' RUL prediction. This study proposes a RUL prediction method of LIBs based on mode decomposition and an improved transformer. Firstly, to mitigate the impact of capacity degradation, we use the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method to decompose the battery capacity degradation into multi-scale component sequences. However, some noise remains in the high-frequency data output by CEEMDAN decomposition. To minimize noise impact on the accuracy of the prediction results, a single high-frequency data is then decomposed into multiple rich-featured subsequences using the variational mode decomposition. Finally, an improved transformer model extracts global and local features from these subsequences to improve the RUL of LIBs prediction accuracy. The proposed method is validated on two widely used public datasets, NASA and CALCE. Experimental results show that the proposed method has lower errors in some evaluation metrics. Compared to the four state-of-the-art methods, the proposed method improves the R-squared metric by 23.37 % and 39.81 %, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [32] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU
    Ding, Guorong
    Wang, Wenbo
    Zhu, Ting
    IEEE ACCESS, 2022, 10 : 89402 - 89413
  • [33] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [34] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [35] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [36] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [37] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)
  • [38] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [39] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Xingjun Li
    Dan Yu
    Vilsen S?ren Byg
    Store Daniel Ioan
    Journal of Energy Chemistry, 2023, (07) : 103 - 121
  • [40] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Li, Xingjun
    Yu, Dan
    Byg, Vilsen Soren
    Ioan, Store Daniel
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 103 - 121