Identification of Phishing URLs Using Machine Learning Models

被引:0
|
作者
Vivek, Meghashyam [1 ]
Premjith, Nithin [1 ]
Johnson, Aaron Antonio [1 ]
Maurya, Ashutosh Kumar [1 ]
Jingle, I. Diana Jeba [1 ]
机构
[1] Christ, Bangalore, Karnataka, India
关键词
XGBoost; Phishing; Prediction; Machine learning; Classifier;
D O I
10.1007/978-981-99-9043-6_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we provide a machine learning-based method for identifying phishing URLs. Sixteen features, including Have IP, Have At, URL Length, URL Depth, Non-standard double slash, HTTPS domain, Shortened URL, Hyphen Count, DNS Record, Domain age, Domain active, iFrame, Mouse Over, Right click, Web Forwards, and Label, were extracted from the 600,000 URLs we gathered as a dataset of legitimate and phishing URLs. We then used this dataset to train a variety of machine learning models. These included standalone models such Naive Bayes, Logistic Regression, Decision Trees, and K-Nearest Neighbors (KNN). We also used ensemble models like Hard Voting, XGBoost, Random Forests, and AdaBoost. Finally, we used deep learning models such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). On evaluation of performance metrics like accuracy, precision, recall, train time and prediction time it was found that XGBoost provides the best performance across all categories.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 50 条
  • [41] Detecting Spear Phishing Attacks Using Machine Learning
    Regulagadda, Ramakrishna
    Krishna, M. Sai
    Prasanth, G.
    Sumalatha, V
    Ramesh, Y. Sai
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 1457 - 1459
  • [42] Detection of Phishing Website Using Machine Learning Approach
    Vilas, Mahajan Mayuri
    Ghansham, Kakade Prachi
    Jaypralash, Sawant Purva
    Shila, Pawar
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2019, : 384 - +
  • [43] Detecting phishing websites using machine learning technique
    Dutta, Ashit Kumar
    PLOS ONE, 2021, 16 (10):
  • [44] Phishing URL detection using machine learning methods
    Ahammad, S. K. Hasane
    Kale, Sunil D.
    Upadhye, Gopal D.
    Pande, Sandeep Dwarkanath
    Babu, E. Venkatesh
    Dhumane, Amol, V
    Bahadur, Dilip Kumar Jang
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [45] Phishing Email Detection Using Machine Learning Techniques
    Alattas, Hussain
    Aljohar, Fay
    Aljunibi, Hawra
    Alweheibi, Muneera
    Alrashdi, Rawan
    Al Azman, Ghadeer
    Alharby, Abdulrahman
    Nagy, Naya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 678 - 685
  • [46] Intelligent phishing website detection using machine learning
    Jha, Ashish Kumar
    Muthalagu, Raja
    Pawar, Pranav M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29431 - 29456
  • [47] Phishing Detection Using Machine Learning Algorithm.
    Tanimu, Jibrilla
    Shiaeles, Stavros
    2022 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2022, : 317 - 322
  • [48] Efficient Email phishing detection using Machine learning
    Abdulraheem, Rana
    Odeh, Ammar
    Al Fayoumi, Mustafa
    Keshta, Ismail
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 354 - 358
  • [49] Intelligent phishing website detection using machine learning
    Ashish Kumar Jha
    Raja Muthalagu
    Pranav M. Pawar
    Multimedia Tools and Applications, 2023, 82 : 29431 - 29456
  • [50] Detecting Ambiguous Phishing Certificates using Machine Learning
    Homayoun, Sajad
    Hageman, Kaspar
    Afzal-Houshmand, Sam
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 1 - 6