Supervised Pectoral Muscle Removal in Mammography Images

被引:1
|
作者
Aliniya, Parvaneh [1 ]
Nicolescu, Mircea [1 ]
Nicolescu, Monica [1 ]
Bebis, George [1 ]
机构
[1] Univ Nevada, Reno, NV 89557 USA
来源
ARTIFICIAL INTELLIGENCE IN MEDICINE, PT II, AIME 2024 | 2024年 / 14845卷
关键词
Breast Cancer; Pectoral Muscle; Mammography;
D O I
10.1007/978-3-031-66535-6_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we provide the segmentation masks of the pectoral muscle for INbreast, MIAS, and a CBIS-DDSM subset datasets, which will enable the development of supervised methods and the utilization of deep learning for pectoral muscle removal from mammography images. We trained AU-Net separately on the INbreast and CBIS-DDSM subset for the segmentation of the pectoral muscle. We used cross-dataset testing to evaluate the performance of the models on an unseen dataset. The experimental results showthat cross-dataset testing achieves a comparable performance to the same-dataset experiments. In addition, the models were tested on the entireMIAS dataset, and they outperformed previous methods. The segmentationmasks are available at https://github.com/Parvaneh-Aliniya/pectoral_muscle_groundtruth_segmentation.
引用
收藏
页码:126 / 130
页数:5
相关论文
共 50 条
  • [11] Automatic pectoral muscle removal in mammograms
    Samuel Rahimeto
    Taye Girma Debelee
    Dereje Yohannes
    Friedhelm Schwenker
    Evolving Systems, 2021, 12 : 519 - 526
  • [12] Automatic pectoral muscle removal in mammograms
    Rahimeto, Samuel
    Debelee, Taye Girma
    Yohannes, Dereje
    Schwenker, Friedhelm
    EVOLVING SYSTEMS, 2021, 12 (02) : 519 - 526
  • [13] Variants of sternal insertion of the pectoral muscle on mammography: A pictorial review
    Cawson, JN
    Papadopoulos, T
    CLINICAL RADIOLOGY, 2002, 57 (06) : 442 - 448
  • [14] Automated segmentation of breast tissue and pectoral muscle in digital mammography
    Rahmatika, Aulia
    Handayani, Astri
    Setiawan, Agung Wahyu
    Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019, 2019, : 397 - 401
  • [15] Improving Breast Cancer Classification Using (Smote) Technique and Pectoral Muscle Removal in Mammographic Images
    Abdulla, Srwa Hasan
    Sagheer, Ali Makki
    Veisi, Hadi
    Mendel, 2021, 27 (02) : 36 - 43
  • [16] Deep Learning for Breast Region and Pectoral Muscle Segmentation in Digital Mammography
    Wang, Kaier
    Khan, Nabeel
    Chan, Ariane
    Dunne, Jonathan
    Highnam, Ralph
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2019), 2019, 11854 : 78 - 91
  • [17] SEGMENTATION OF PECTORAL MUSCLE AND DETECTION OF MASSES IN MAMMOGRAPHIC IMAGES
    Kavitha, M.
    Rejusha, M.
    2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2015, : 1201 - 1204
  • [18] Mammography: Correlation of pectoral muscle width and the length in the mediolateral oblique view of the breast
    Spuur, K.
    Poulos, A.
    Currie, G.
    Rickard, M.
    RADIOGRAPHY, 2010, 16 (04) : 286 - 291
  • [19] Mammography image quality: Analysis of evaluation criteria using pectoral muscle presentation
    Bentley, Kelly
    Poulos, Ann
    Rickard, Mary
    RADIOGRAPHY, 2008, 14 (03) : 189 - 194
  • [20] Pectoral muscle segmentation on mammographic images based on radial lengths
    Chatzistergos, Sevastianos
    Andreadis, Ioannis
    Nikita, Konstantina S.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2016, : 504 - 509