Supervised Pectoral Muscle Removal in Mammography Images

被引:1
|
作者
Aliniya, Parvaneh [1 ]
Nicolescu, Mircea [1 ]
Nicolescu, Monica [1 ]
Bebis, George [1 ]
机构
[1] Univ Nevada, Reno, NV 89557 USA
来源
ARTIFICIAL INTELLIGENCE IN MEDICINE, PT II, AIME 2024 | 2024年 / 14845卷
关键词
Breast Cancer; Pectoral Muscle; Mammography;
D O I
10.1007/978-3-031-66535-6_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we provide the segmentation masks of the pectoral muscle for INbreast, MIAS, and a CBIS-DDSM subset datasets, which will enable the development of supervised methods and the utilization of deep learning for pectoral muscle removal from mammography images. We trained AU-Net separately on the INbreast and CBIS-DDSM subset for the segmentation of the pectoral muscle. We used cross-dataset testing to evaluate the performance of the models on an unseen dataset. The experimental results showthat cross-dataset testing achieves a comparable performance to the same-dataset experiments. In addition, the models were tested on the entireMIAS dataset, and they outperformed previous methods. The segmentationmasks are available at https://github.com/Parvaneh-Aliniya/pectoral_muscle_groundtruth_segmentation.
引用
收藏
页码:126 / 130
页数:5
相关论文
共 50 条
  • [1] Towards Robust Supervised Pectoral Muscle Segmentation in Mammography Images
    Aliniya, Parvaneh
    Nicolescu, Mircea
    Nicolescu, Monica
    Bebis, George
    JOURNAL OF IMAGING, 2024, 10 (12)
  • [2] Segmentation of Pectoral Muscle Region in MLO Mammography Images by Backboned U-Net
    Dogan, Ramazan Ozgur
    Ture, Hayati
    Kayikcioglu, Temel
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [3] Comparison between two packages for pectoral muscle removal on mammographic images
    Mario Sansone
    Stefano Marrone
    Giusi Di Salvio
    Maria Paola Belfiore
    Gianluca Gatta
    Roberta Fusco
    Laura Vanore
    Chiara Zuiani
    Francesca Grassi
    Maria Teresa Vietri
    Vincenza Granata
    Roberto Grassi
    La radiologia medica, 2022, 127 : 848 - 856
  • [4] Comparison between two packages for pectoral muscle removal on mammographic images
    Sansone, Mario
    Marrone, Stefano
    Di Salvio, Giusi
    Belfiore, Maria Paola
    Gatta, Gianluca
    Fusco, Roberta
    Vanore, Laura
    Zuiani, Chiara
    Grassi, Francesca
    Vietri, Maria Teresa
    Granata, Vincenza
    Grassi, Roberto
    RADIOLOGIA MEDICA, 2022, 127 (08): : 848 - 856
  • [5] Developing an Improved Method to Remove Pectoral Muscle for Better Diagnosis of Breast Cancer in Mammography Images
    Abaei, Golnoush
    Rezaei, Zahra
    Mian, Usama Qasim
    Abdalla, Yasir Azhari Abdalgadir
    Mathew, Nitin
    Gan, Leong Yi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 659 - 666
  • [6] A Data-Centric Approach for Pectoral Muscle Deep Learning Segmentation Enhancements in Mammography Images
    Silva, Santiago V.
    Sierra-Franco, Cesar A.
    Hurtado, Jan
    da Cruz, Leonardo C.
    Thomaz, Victor de A.
    Silva-Calpa, Greis Francy M.
    Raposo, Alberto B.
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 56 - 67
  • [7] Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency
    Simin Chen
    Debbie L. Bennett
    Graham A. Colditz
    Shu Jiang
    Cancer Causes & Control, 2024, 35 : 185 - 191
  • [8] Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency
    Chen, Simin
    Bennett, Debbie L.
    Colditz, Graham A.
    Jiang, Shu
    CANCER CAUSES & CONTROL, 2024, 35 (01) : 185 - 191
  • [9] Automatic Identification and Extraction of Pectoral Muscle in Digital Mammography
    Pavan, Ana L. M.
    Vacavant, Antoine
    Alves, Allan F. F.
    Trindade, Andre P.
    de Pina, Diana R.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 151 - 154
  • [10] Pectoral muscle removal using entropy fuzzy clustering and RCM-CNN based mammography classification
    Reddy V.A.
    Soni B.
    International Journal of Information Technology, 2023, 15 (5) : 2663 - 2675