Considerations and prospects for validating a machine learning-based choledocholithiasis prediction model Reply

被引:0
|
作者
Steinway, Steven N. [1 ]
Caffo, Brian S. [2 ]
Akshintala, Venkata S. [1 ]
机构
[1] Johns Hopkins Med Inst, Div Gastroenterol & Hepatol, 600 N Wolfe St,Blalock 411, Baltimore, MD 21287 USA
[2] Johns Hopkins Bloomberg Sch Publ, Dept Biostat, Ctr Teaching & Learning, Hlth Ctr Teaching & Learning, Baltimore, MD USA
关键词
D O I
10.1055/a-2292-9187
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
引用
收藏
页码:554 / 554
页数:1
相关论文
共 50 条
  • [41] A Machine Learning-Based Intrauterine Growth Restriction (IUGR) Prediction Model for Newborns
    Deval, Ravi
    Saxena, Pallavi
    Pradhan, Dibyabhaba
    Mishra, Ashwani Kumar
    Jain, Arun Kumar
    INDIAN JOURNAL OF PEDIATRICS, 2022, 89 (11): : 1140 - 1143
  • [42] Machine learning-based mortality prediction model for heat-related illness
    Hirano, Yohei
    Kondo, Yutaka
    Hifumi, Toru
    Yokobori, Shoji
    Kanda, Jun
    Shimazaki, Junya
    Hayashida, Kei
    Moriya, Takashi
    Yagi, Masaharu
    Takauji, Shuhei
    Yamaguchi, Junko
    Okada, Yohei
    Okano, Yuichi
    Kaneko, Hitoshi
    Kobayashi, Tatsuho
    Fujita, Motoki
    Yokota, Hiroyuki
    Okamoto, Ken
    Tanaka, Hiroshi
    Yaguchi, Arino
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] Machine learning-based survival prediction model for postoperative parotid mucoepidermoid carcinoma
    Zihan, C.
    Ying, L.
    Zongwei, H.
    Sufang, Q.
    ANNALS OF ONCOLOGY, 2023, 34 : S578 - S578
  • [44] Machine learning-based mortality prediction model for heat-related illness
    Yohei Hirano
    Yutaka Kondo
    Toru Hifumi
    Shoji Yokobori
    Jun Kanda
    Junya Shimazaki
    Kei Hayashida
    Takashi Moriya
    Masaharu Yagi
    Shuhei Takauji
    Junko Yamaguchi
    Yohei Okada
    Yuichi Okano
    Hitoshi Kaneko
    Tatsuho Kobayashi
    Motoki Fujita
    Hiroyuki Yokota
    Ken Okamoto
    Hiroshi Tanaka
    Arino Yaguchi
    Scientific Reports, 11
  • [45] A new machine learning-based prediction model for subtype diagnosis in primary aldosteronism
    Shi, Shaomin
    Tian, Yuan
    Ren, Yong
    Li, Qing'an
    Li, Luhong
    Yu, Ming
    Wang, Jingzhong
    Gao, Ling
    Xu, Shaoyong
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [46] Machine learning-based ensemble model for groundwater quality prediction: A case study
    Jose, Annie
    Yasala, Srinivas
    WATER PRACTICE AND TECHNOLOGY, 2024, 19 (06) : 2364 - 2375
  • [47] Novel noninvasive prediction for pulse pressure variation: a machine learning-based model
    Zribi, Benjamin
    Peres, Alexander
    Iluz-Freundlich, Daniel
    Aranbitski, Roussana
    Orbach-Zinger, Sharon
    Livne, Michal Y.
    Loebl, Nadav
    Perl, Leor
    Statlender, Liran
    Raz, Yair
    Fein, Shai
    Azem, Karam
    BRITISH JOURNAL OF ANAESTHESIA, 2025, 134 (04) : 1200 - 1203
  • [48] Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model
    Kaya, Aydin
    Keceli, Ali Seydi
    Catal, Cagatay
    Tekinerdogan, Bedir
    SENSORS, 2020, 20 (11) : 1 - 18
  • [49] Machine learning-based prediction of Q-voter model in complex networks
    Pineda, Aruane M.
    Kent, Paul
    Connaughton, Colm
    Rodrigues, Francisco A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (12):
  • [50] Development and Validation of a Machine Learning-Based Prediction Model for Detection of Biliary Atresia
    Choi, Ho Jung
    Kim, Yeong Eun
    Namgoong, Jung-Man
    Kim, Inki
    Park, Jun Sung
    Baek, Woo Im
    Lee, Byong Sop
    Yoon, Hee Mang
    Cho, Young Ah
    Lee, Jin Seong
    Shim, Jung Ok
    Oh, Seak Hee
    Moon, Jin Soo
    Ko, Jae Sung
    Kim, Dae Yeon
    Kim, Kyung Mo
    GASTRO HEP ADVANCES, 2023, 2 (06): : 778 - 787