Physical and mechanical properties of fused deposition modelling PLA/ carbon dot nanocomposites

被引:1
|
作者
Campuzano, Alberto Jorge Baeza [1 ]
Rezende, Rafael Barbosa [2 ]
Taborda, Nestor Cifuentes [2 ]
dos Santos, Julio Cesar [3 ]
Pereira, Fabiano Vargas [2 ]
Panzera, Tulio Hallak [1 ]
机构
[1] Fed Univ Sao Joao del Rei UFSJ, Ctr Innovat & Technol Composite Mat CITeC, Dept Mech & Prod Engn, Praca Frei Orlando 170, BR-36307352 Sao Joao Del Rei, Brazil
[2] Univ Fed Minas Gerais UFMG, Dept Chem, Av Antonio Carlos,6627, BR-31270901 Belo Horizonte, MG, Brazil
[3] Univ Sao Paulo, Dept Mat Sci & Engn, Av Joao Dagnone,110, BR-13563120 Sao Carlos, SP, Brazil
来源
关键词
Single-screw extrusion; 3d printing; Fluorescence analysis; Carbon dots; Failure analysis; Mechanical properties;
D O I
10.1016/j.mtcomm.2024.110025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study explores the incorporation of carbon dots (CDs) into polylactic acid (PLA) filaments to improve their mechanical properties for fused deposition modelling (FDM). Known for their adjustable photoluminescence, high quantum yield, low toxicity, and biocompatibility, CDs are integrated into PLA at various concentrations (0.1, 0.3, 0.5, 0.7, 1.0, 3.0, and 5.0 wt%). Samples reinforced with 0.1-0.7 wt% CDs exhibit a tensile modulus ranging from 3.55 to 4.0 GPa and a tensile strength from 30 to 35 MPa. Meanwhile, those with 3.0 wt% achieve a higher tensile modulus (4.3 GPa) and strength (55 MPa), albeit with noted manufacturing challenges. The inclusion of 5.0 wt% CDs compromises the filament manufacturing process, resulting in a reduced tensile stress of 27 MPa, lower than pristine PLA, and exhibiting micro defects after 3D printing. Fluorescence analysis during tensile testing indicates that lower CD concentrations reduce fluorescence, while higher concentrations increase it, suggesting a correlation with the mechanical response. PLA reinforced with 0.5 wt% CDs not only offers improved mechanical properties but also facilitates easy manufacturing, showing promise for creating both solid and lattice 3D-printed products.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] MECHANICAL PROPERTIES AND FAILURE ANALYSIS OF PLA/COPPER COMPOSITES FABRICATED BY FUSED DEPOSITION MODELLING
    Kumar, R. V.
    Kumar, K. R.
    Soms, N.
    JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY, 2024, 60 (01) : 33 - 44
  • [2] Investigation on mechanical properties of bronze infill PLA composite fabricated by fused deposition modelling
    Kumar, K. Ravi
    Annamalai, K. Sivavel
    Sriram, H.
    Soms, Nisha
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (19) : 9589 - 9600
  • [3] Mechanical and Physical Properties of Recycled-Carbon-Fiber-Reinforced Polylactide Fused Deposition Modelling Filament
    Omar, Nur'ain Wahidah Ya
    Shuaib, Norshah Aizat
    Hadi, Mohd Haidiezul Jamal Ab
    Azmi, Azwan Iskandar
    Misbah, Muhamad Nur
    MATERIALS, 2022, 15 (01)
  • [4] A comparative study on mechanical properties of PLA, PETG, and carbon fiber prepared by fused deposition modeling
    Balasrinivasan, M.
    Kumar, A. Varun
    Sathickbasha, K.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024,
  • [5] Orthotropic mechanical properties of PLA materials fabricated by fused deposition modeling
    Li, Meiyu
    Xu, Yanan
    Fang, Jianguang
    THIN-WALLED STRUCTURES, 2024, 199
  • [6] Effect of Fibre Size on Mechanical Properties and Surface Roughness of PLA Composites by Using Fused Deposition Modelling (FDM)
    Jamadi A.H.
    Razali N.
    Malingam S.D.
    Taha M.M.
    Journal of Renewable Materials, 2023, 11 (08) : 3261 - 3276
  • [7] Influence of fused deposition modelling process parameters on wear strength of carbon fibre PLA
    Srinivasan, R.
    Aravindkumar, N.
    Krishna, S. Aravind
    Aadhishwaran, S.
    George, John
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 1794 - 1800
  • [8] Mechanical properties of PLA-based composites for fused deposition modeling technology
    S. M. Lebedev
    O. S. Gefle
    E. T. Amitov
    D. V. Zhuravlev
    D. Y. Berchuk
    E. A. Mikutskiy
    The International Journal of Advanced Manufacturing Technology, 2018, 97 : 511 - 518
  • [9] Mechanical properties of PLA-based composites for fused deposition modeling technology
    Lebedev, S. M.
    Gefle, O. S.
    Amitov, E. T.
    Zhuravlev, D. V.
    Berchuk, D. Y.
    Mikutskiy, E. A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 97 (1-4): : 511 - 518
  • [10] Investigation on the influence of fused deposition modelling parameters on the mechanical properties of carbon fibre/nylon composites
    Palaniappan, Ashok Kumar
    Kumar, Krishnan Ravi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024, 238 (04) : 1916 - 1925