Relevance-aware visual entity filter network for multimodal aspect-based sentiment analysis

被引:0
|
作者
Chen, Yifan [1 ]
Xiong, Haoliang [1 ]
Li, Kuntao [1 ]
Mai, Weixing [1 ]
Xue, Yun [1 ]
Cai, Qianhua [1 ]
Li, Fenghuan [2 ]
机构
[1] South China Normal Univ, Sch Elect & Informat Engn, Foshan 528225, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
关键词
Multimodal aspect-based sentiment analysis (MABSA); Relevance-aware visual entity filter; External knowledge; Image-aspect relevance; Cross-modal alignment;
D O I
10.1007/s13042-024-02342-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal aspect-based sentiment analysis, which aims to identify the sentiment polarities over each aspect mentioned in an image-text pair, has sparked considerable research interest in the field of multimodal analysis. Despite existing approaches have shown remarkable results in incorporating external knowledge to enhance visual entity information, they still suffer from two problems: (1) the image-aspect global relevance. (2) the entity-aspect local alignment. To tackle these issues, we propose a Relevance-Aware Visual Entity Filter Network (REF) for MABSA. Specifically, we utilize the nouns of ANPs extracted from the given image as bridges to facilitate cross-modal feature alignment. Moreover, we introduce an additional "UNRELATED" marker word and utilize Contrastive Content Re-sourcing (CCR) and Contrastive Content Swapping (CCS) constraints to obtain accurate attention weight to identify image-aspect relevance for dynamically controlling the contribution of visual information. We further adopt the accurate reversed attention weight distributions to selectively filter out aspect-unrelated visual entities for better entity-aspect alignment. Comprehensive experimental results demonstrate the consistent superiority of our REF model over state-of-the-art approaches on the Twitter-2015 and Twitter-2017 datasets.
引用
收藏
页码:1389 / 1402
页数:14
相关论文
共 50 条
  • [41] Convolution-based Memory Network for Aspect-based Sentiment Analysis
    Fan, Chuang
    Gao, Qinghong
    Du, Jiachen
    Gui, Lin
    Xu, Ruifeng
    Wong, Kam-Fai
    ACM/SIGIR PROCEEDINGS 2018, 2018, : 1161 - 1164
  • [42] Multi-grained fusion network with self-distillation for aspect-based multimodal sentiment analysis
    Yang, Juan
    Xiao, Yali
    Du, Xu
    KNOWLEDGE-BASED SYSTEMS, 2024, 293
  • [43] MASAD: A large-scale dataset for multimodal aspect-based sentiment analysis
    Zhou, Jie
    Zhao, Jiabao
    Huang, Jimmy Xiangji
    Hu, Qinmin Vivian
    He, Liang
    NEUROCOMPUTING, 2021, 455 : 47 - 58
  • [44] Self-adaptive attention fusion for multimodal aspect-based sentiment analysis
    Wang, Ziyue
    Guo, Junjun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 1305 - 1320
  • [45] Retrieving Users' Opinions on Social Media with Multimodal Aspect-Based Sentiment Analysis
    Anschuetz, Miriam
    Eder, Tobias
    Groh, Georg
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 1 - 8
  • [46] MCPR: A Chinese Product Review Dataset for Multimodal Aspect-Based Sentiment Analysis
    Xu, Carol
    Luo, Xuan
    Wang, Dan
    COGNITIVE COMPUTING, ICCC 2022, 2022, 13734 : 83 - 90
  • [47] Multi-Granularity Position-Aware Convolutional Memory Network for Aspect-Based Sentiment Analysis
    Pan, Yuanyuan
    Gan, Jun
    Ran, Xiangying
    Wang, Chongjun
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 728 - 735
  • [48] Aspect Detection and Sentiment Classification using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis
    Ilmania, Arfinda
    Abdurrahman
    Cahyawijaya, Samuel
    Purwarianti, Ayu
    2018 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2018, : 62 - 67
  • [49] Survey on aspect detection for aspect-based sentiment analysis
    Trusca, Maria Mihaela
    Frasincar, Flavius
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (05) : 3797 - 3846
  • [50] Aspect-based sentiment analysis via relation-aware collaborative learning
    Zhou, Lexin
    Yang, Wenzhong
    Wang, Ting
    Wu, Yongzhi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 1445 - 1454