A Comparative Study on the Melt Crystallization of Biodegradable Poly(butylene succinate-co-terephthalate) and Poly(butylene adipate-co-terephthalate) Copolyesters

被引:0
|
作者
Qin, Pengkai [1 ,2 ]
Wu, Linbo [1 ,2 ]
机构
[1] Zhejiang Univ, Minist Educ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
biodegradable polymers; biobased polymers; aliphatic-aromatic copolyesters; melt crystallization; transparency; mechanical property; poly(butylene succinate-co-terephthalate); poly(butylene adipate-co-terephthalate); SUCCINIC ACID; POLYESTERS; BEHAVIOR; KINETICS;
D O I
10.3390/polym16172445
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
As an important biodegradable and partially biobased copolyester, poly(butylene succinate-co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but it was found to display poorer melt processability during pelletizing and injection molding. To make clear its melt crystallization behavior under rapid cooling, PBST48 and PBST44 were synthesized, and their melt crystallization was investigated comparatively with PBAT(48). PBST48 showed a PBAT(48)-comparable melt crystallization performance at a cooling rate of 10 degrees C/min or at isothermal conditions, but it showed a melt crystallization ability at a cooling rate of 40 degrees C/min which was clearly poorer. PBST44, which has the same mass composition as PBAT(48), completely lost its melt crystallization ability under the rapid cooling. The weaker chain mobility of PBST, resulting from its shorter succinate moiety, is responsible for its inferior melt crystallization ability and processability. In comparison with PBAT(48), PBST48 displayed higher tensile modulus, and both PBST48 and PBST44 showed higher light transmittance. The findings in this study deepen the understanding of PBST's properties and will be of guiding significance for improving PBST's processability and application development.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Melt and cold crystallization in a poly(3-hydroxybutyrate) poly(butylene adipate-co-terephthalate) blend
    Anna Raffaela de Matos Costa
    Raquel Marques Santos
    Edson Noriyuki Ito
    Laura Hecker de Carvalho
    Eduardo Luís Canedo
    Journal of Thermal Analysis and Calorimetry, 2019, 137 : 1341 - 1346
  • [32] Effect of organo-modified montmorillonite on poly(butylene succinate)/poly(butylene adipate-co-terephthalate) nanocomposites
    Chieng, B. W.
    Ibrahim, N. A.
    Yunus, W. M. Z. Wan
    EXPRESS POLYMER LETTERS, 2010, 4 (07): : 404 - 414
  • [33] Binary Blends of Poly(Butylene Adipate-co-Terephthalate) and Poly(Butylene Succinate): A New Matrix for Biocomposites Applications
    Muthuraj, Rajendran
    Misra, Manjusri
    Mohanty, Amar Kumar
    PROCEEDINGS OF PPS-30: THE 30TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2015, 1664
  • [34] Sustainable composites from biodegradable poly(butylene succinate) modified with thermoplastic starch and poly(butylene adipate-co-terephthalate): preparation and performance
    Wei, X. Y.
    Ren, L.
    Sun, Y. N.
    Zhang, X. Y.
    Guan, X. F.
    Zhang, M. Y.
    Zhang, H. X.
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (37) : 17384 - 17397
  • [35] Preparation, Crystallization, and Properties of Biodegradable Poly(butylene adipate-co-terephthalate)/Organomodified Montmorillonite Nanocomposites
    Yang, Fang
    Qiu, Zhaobin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (03) : 1426 - 1434
  • [36] Synthesis and characteristics of biodegradable copolyesters from the transesterification of poly(butylene adipate-co-succinate) and poly(ethylene terephthalate)
    Kim, SW
    Lim, JC
    Kim, DJ
    Seo, KH
    JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 92 (05) : 3266 - 3274
  • [37] Synthesis and Characterization of Poly(butylene glycol adipate-co-terephthalate/diphenylsilanediol adipate-co-terephthalate) Copolyester
    Ge, Tiejun
    Wang, Meiyuan
    He, Xiaofeng
    Yu, Yang
    Liu, Xiaofeng
    Wen, Bo
    Liu, Peihan
    POLYMERS, 2024, 16 (08)
  • [38] Mechanically reinforced biodegradable Poly(butylene adipate-co-terephthalate) with interactive nanoinclusions
    Lai, Lei
    Li, Jiaxu
    Liu, Pingwei
    Wu, Linbo
    Severtson, Steven J.
    Wang, Wen-Jun
    POLYMER, 2020, 197 (197)
  • [39] A study of poly vinyl chloride / poly(butylene adipate-co-terephthalate) blends
    Nor Azowa Ibrahim
    Nazri M. Rahim
    Wan Zin Wan Yunus
    Jamaliah Sharif
    Journal of Polymer Research, 2011, 18 : 891 - 896
  • [40] A study of poly vinyl chloride/poly(butylene adipate-co-terephthalate) blends
    Ibrahim, Nor Azowa
    Rahim, Nazri M.
    Yunus, Wan Zin Wan
    Sharif, Jamaliah
    JOURNAL OF POLYMER RESEARCH, 2011, 18 (05) : 891 - 896