Self-Training-Based Unsupervised Domain Adaptation for Object Detection in Remote Sensing Imagery

被引:0
|
作者
Luo, Sihao [1 ]
Ma, Li [1 ]
Yang, Xiaoquan [2 ,3 ]
Luo, Dapeng [1 ]
Du, Qian [4 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] JITRI, HUST, Suzhou Inst Brainmat, Suzhou 215123, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Detectors; Training; Remote sensing; Object detection; Reliability; Computer network reliability; Accuracy; Domain adaptation; object detection; remote sensing imagery; self-training (ST); CROSS-DOMAIN; NETWORK;
D O I
10.1109/TGRS.2024.3457789
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel two-stage cross-domain self-training (CDST) framework for unsupervised domain adaptive object detection in remote sensing. The first stage introduces the generative adversarial network (GAN)-based domain transfer strategy to preliminarily mitigate the domain shift for higher quality initial pseudo-labeled images, which utilizes the CycleGAN to transfer source-domain images to match the target domain. Moreover, the key issue in tailoring the self-training (ST) to unsupervised domain adaptive detection lies in the quality of pseudo-labeled images. To select high-quality pseudo-labeled images under the domain-shift circumstance, we propose hard example selection-based self-training (HES-ST) with the three key steps: 1) detector-based example division (DED), which divides the detected examples into easy examples and hard ones according to their confidence level; 2) confidence and relation joint score (CRJS)-based hard example selection, which combines two reliability levels calculated, respectively, by the detector and relation network (RN) module to mine reliable examples; and 3) union example (UE)-based training image selection, which combines both easy and reliable hard examples to choose target-domain images that may contain fewer detection errors. The experimental results on several remote sensing datasets demonstrate the effectiveness of our proposed framework. Compared with the baseline detector trained on the source dataset, our approach consistently improves the detection performance on the target dataset by 15.7%-16.8% mean average precision (mAP) and achieves the state-of-the-art (SOTA) results under various domain adaptation scenarios.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] One-Shot Unsupervised Domain Adaptation for Object Detection
    Wan, Zhiqiang
    Li, Lusi
    Li, Hepeng
    He, Haibo
    Ni, Zhen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [42] Category Dictionary Guided Unsupervised Domain Adaptation for Object Detection
    Li, Shuai
    Huang, Jianqiang
    Hua, Xian-Sheng
    Zhang, Lei
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1949 - 1957
  • [43] Uncertainty-Aware Unsupervised Domain Adaptation in Object Detection
    Guan, Dayan
    Huang, Jiaxing
    Xiao, Aoran
    Lu, Shijian
    Cao, Yanpeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2502 - 2514
  • [44] ST3D++: Denoised Self-Training for Unsupervised Domain Adaptation on 3D Object Detection
    Yang, Jihan
    Shi, Shaoshuai
    Wang, Zhe
    Li, Hongsheng
    Qi, Xiaojuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6354 - 6371
  • [45] A multi camera unsupervised domain adaptation pipeline for object detection in cultural sites through adversarial learning and self-training
    Pasqualino, Giovanni
    Furnari, Antonino
    Farinella, Giovanni Maria
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 222
  • [46] JS']JST: Joint Self-training for Unsupervised Domain Adaptation on 2D&3D Object Detection
    Ding, Guangyao
    Zhang, Meiying
    Li, E.
    Hao, Qi
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [47] Unsupervised Multimodal Remote Sensing Image Registration via Domain Adaptation
    Shi, Lukui
    Zhao, Ruiyun
    Pan, Bin
    Zou, Zhengxia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] FEATURE-ATTENTIONED OBJECT DETECTION IN REMOTE SENSING IMAGERY
    Li, Chengzheng
    Xu, Chunyan
    Cui, Zhen
    Wang, Dan
    Zhang, Tong
    Yang, Jian
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3886 - 3890
  • [49] Cloud Detection From Remote Sensing Imagery Based on Domain Translation Network
    Guo, Jianhua
    Yang, Jingyu
    Yue, Huanjing
    Chen, Yang
    Hou, Chunping
    Li, Kun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] Cloud Detection from Remote Sensing Imagery Based on Domain Translation Network
    Guo, Jianhua
    Yang, Jingyu
    Yue, Huanjing
    Chen, Yang
    Hou, Chunping
    Li, Kun
    IEEE Geoscience and Remote Sensing Letters, 2022, 19