Can diffusion tensor imaging unlock the secrets of the growth plate?

被引:1
|
作者
Kvist, Ola [1 ,2 ]
Santos, Laura A. [3 ]
De Luca, Francesca [4 ,5 ]
Jaramillo, Diego [3 ]
机构
[1] Karolinska Univ Hosp, Dept Paediat Radiol, Eugeniavagen 23, S-17164 Stockholm, Sweden
[2] Karolinska Inst, Dept Womens & Childrens Hlth, S-17177 Stockholm, Sweden
[3] Columbia Univ, Dept Radiol, Irvine Med Ctr, New York, NY USA
[4] Karolinska Univ Hosp, Dept Radiol, S-17164 Stockholm, Sweden
[5] Karolinska Univ Hosp, Dept Clin Neurosci, S-17165 Stockholm, Sweden
来源
BJR OPEN | 2024年 / 6卷 / 01期
关键词
growth plate; diffusion tensor imaging; growth; tractography; MR; EPIPHYSEAL; CHILDREN;
D O I
10.1093/bjro/tzae005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
"How tall will I be?" Every paediatrician has been asked this during their career. The growth plate is the main site of longitudinal growth of the long bones. The chondrocytes in the growth plate have a columnar pattern detectable by diffusion tensor imaging (DTI). DTI shows the diffusion of water in a tissue and whether it is iso- or anisotropic. By detecting direction and magnitude of diffusion, DTI gives information about the microstructure of the tissue. DTI metrics include tract volume, length, and number, fractional anisotropy (FA), and mean diffusivity. DTI metrics, particularly tract volume, provide quantitative data regarding skeletal growth and, in conjunction with the fractional anisotropy, be used to determine whether a growth plate is normal. Tractography is a visual display of the diffusion, depicting its direction and amplitude. Tractography gives a more qualitative visualization of cellular orientation in a tissue and reflects the activity in the growth plate. These two components of DTI can be used to assess the growth plate without ionizing radiation or pain. Further refinements in DTI will improve prediction of post-imaging growth and growth plate closure, and assessment of the positive and negative effect of treatments like cis-retinoic acid and growth hormone administration.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging
    de Figueiredo, Eduardo H. M. S. G.
    Borgonovi, Arthur F. N. G.
    Doring, Thomas M.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2011, 19 (01) : 1 - +
  • [42] Error propagation framework for diffusion tensor imaging via diffusion tensor representations
    Koay, Cheng Guan
    Chang, Lin-Ching
    Pierpaoli, Carlo
    Basser, Peter J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (08) : 1017 - 1034
  • [43] Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants
    Jeroen Dudink
    Jan Buijs
    Paul Govaert
    Arjen L. van Zwol
    Nikk Conneman
    Johannes B. van Goudoever
    Maarten Lequin
    Pediatric Radiology, 2010, 40 : 1397 - 1404
  • [44] Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants
    Dudink, Jeroen
    Buijs, Jan
    Govaert, Paul
    van Zwol, Arjen L.
    Conneman, Nikk
    van Goudoever, Johannes B.
    Lequin, Maarten
    PEDIATRIC RADIOLOGY, 2010, 40 (08) : 1397 - 1404
  • [45] Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke
    Werring, DJ
    Toosy, AT
    Clark, CA
    Parker, GJM
    Barker, GJ
    Miller, DH
    Thompson, AJ
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2000, 69 (02): : 269 - 272
  • [46] DIFFUSION TENSOR IMAGING CAN PREDICT SURGICAL OUTCOMES OF PATIENTS WITH CERVICAL COMPRESSION MYELOPATHY
    Kitamura, Mitsuhiro
    Maki, Satoshi
    Koda, Masao
    Furuya, Takeo
    Iijima, Yasushi
    Saito, Jyunya
    Miyamoto, Takuya
    Inage, Kazuhide
    Orita, Sumihisa
    Yamazaki, Masashi
    Ohtori, Seiji
    JOURNAL OF NEUROTRAUMA, 2017, 34 (13) : A54 - A54
  • [47] Diffusion tensor imaging can predict surgical outcomes of patients with cervical compression myelopathy
    Satoshi Maki
    Masao Koda
    Mitsuhiro Kitamura
    Taigo Inada
    Koshiro Kamiya
    Mitsutoshi Ota
    Yasushi Iijima
    Junya Saito
    Yoshitada Masuda
    Koji Matsumoto
    Masatoshi Kojima
    Takayuki Obata
    Kazuhisa Takahashi
    Masashi Yamazaki
    Takeo Furuya
    European Spine Journal, 2017, 26 : 2459 - 2466
  • [48] Can 3.0 Tesla diffusion tensor Imaging parameters be prognostic indicators in breast cancer?
    Ozal, Safiye Tokgoz
    Inci, Ercan
    Gemici, Aysegul Akdogan
    Turgut, Hurriyet
    Cikot, Murat
    Karabulut, Mehmet
    CLINICAL IMAGING, 2018, 51 : 240 - 247
  • [49] Diffusion tensor imaging can predict surgical outcomes of patients with cervical compression myelopathy
    Maki, Satoshi
    Koda, Masao
    Kitamura, Mitsuhiro
    Inada, Taigo
    Kamiya, Koshiro
    Ota, Mitsutoshi
    Iijima, Yasushi
    Saito, Junya
    Masuda, Yoshitada
    Matsumoto, Koji
    Kojima, Masatoshi
    Obata, Takayuki
    Takahashi, Kazuhisa
    Yamazaki, Masashi
    Furuya, Takeo
    EUROPEAN SPINE JOURNAL, 2017, 26 (09) : 2459 - 2466
  • [50] Diffusion tensor imaging can detect the early stages of cartilage damage: a comparison study
    Ukai, Taku
    Sato, Masato
    Yamashita, Tomohiro
    Imai, Yutaka
    Mitani, Genya
    Takagaki, Tomonori
    Serigano, Kenji
    Mochida, Joji
    BMC MUSCULOSKELETAL DISORDERS, 2015, 16